Skip to main content
Log in

Holographic Encryption of Color Video Stream with 4k Resolution Using Phase Liquid Crystal Light Modulators

  • OPTICOPHYSICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

This study examines the use of optical encoding to prevent unauthorized access to various categories of information (including video) during operational transmission. Experimentally implemented holographic coding in spatially incoherent radiation of a 4K color video stream with digital input of information and dynamically changing coding elements-holograms was used to improve the quality of video stream coding and ensure high throughput of the coding system. High-resolution liquid-crystal spatial-temporal light modulators were used to input encoded video information and display holograms. The encoding method is based on registering an optical convolution of the input scene image with the encoding response of the hologram. In this case, individual color channels of each frame of the video stream are encoded in turn. Numerical methods of inverse filtering and regularization were used for decoding. The results of the present studies will be useful in creating a new generation of secure high-resolution video communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. Alfalou and C. Brosseau, Adv. Opt. Photonics, 1, 589–636 (2009), https://doi.org/10.1364/aop.1000589.

    Article  ADS  Google Scholar 

  2. B. Javidi, A. Carnicer, M. Yamaguchi, et al., J. Opt., 18, No. 8, Article ID 083001 (2016), https://doi.org/10.1088/2040-8978/18/8/083001.

  3. M. A. Mohamed, A. S. Samarah, and M. I. F. Allah, Int. J. Comput. Sci. Issues, 11, 125–129 (2014), available at: https://www.ijcsi.org/articles/Optical-encryption-techniques-an-overview.php (accessed: 05/11/2023).

  4. A. Matin and X. Wang, Sci. Rep., 11, 1–11 (2021), https://doi.org/10.1038/s41598-021-02520-8.

    Article  ADS  Google Scholar 

  5. A. Carnicer, I. Juvells, B. Javidi, and R. Martrnez-Herrero, Opt. Express, 24, Article ID 6793 (2016), https://doi.org/10.1364/OE.24.006793.

  6. W. Chen, IEEE Photonics J., 8, Article ID 6900608 (2016), https://doi.org/10.1109/JPHOT.2016.2550322.

  7. S. H. Jeon and S. K. J. Gil, Opt. Soc. Korea, 20, 722–732 (2016), https://doi.org/10.3807/JOSK.2016.20.6722.

    Article  Google Scholar 

  8. S. K. Rajput and N. K. Nishchal, Opt. Commun., 388, 38–46 (2017), https://doi.org/10.1016/j.optcom.2016.11.002.

    Article  ADS  Google Scholar 

  9. A. Jaramillo, J. F. Barrera, A. V. Zea, and R. Torroba, Opt. Lasers Eng., 102, 119–125 (2018), https://doi.org/10.1016/j.optlaseng.2017.10.008.

    Article  Google Scholar 

  10. B. Javidi, A. Markman, and S. Rawat, Appl. Opt., 57, B190–B196 (2018), https://doi.org/10.1364/AO.57.00B190.

    Article  Google Scholar 

  11. H. Hai, S. Pan, M. Liao, D. Lu, W. He, and X. Peng, Opt. Express, 27, 21204 (2019), https://doi.org/10.1364/oe.27.021204.

    Article  ADS  Google Scholar 

  12. A. Jaramillo-Osorio, J. F. Barrera-Ramlrez, A. Mira-Agudelo, A. Velez-Zea, and R. Torroba, J. Opt., 22, Article ID 035702 (2020), https://doi.org/10.1088/2040-8986/ab68f0.

  13. C. Lin, X. Shen, and B. Li, Opt. Express, 22, Article ID 20727 (2014), https://doi.org/10.1364/OE.22.020727.

  14. S. Jiao, Z. Jin, C. Zhou, W. Zou, and X. Li, J. Opt. Soc. Am. A, 35, A23 (2018), https://doi.org/10.1364/josaa.35.000a23.

    Article  ADS  Google Scholar 

  15. N. N. Evtikhiev, V. V. Krasnov, I. P. Ryabcev, V. G. Rodin, R. S. Starikov, and P. A. Cheremkhin, Meas. Tech., 64, No. 5, 346–351 (2021), https://doi.org/10.1007/s11018-021-01940-2

    Article  Google Scholar 

  16. N. N. Evtikhiev, V. V. Krasnov, D. Yu. Molodtsov, V. G. Rodin, R. S. Starikov, and P. A. Cheremkhin, Optoelectron. Instrum. Data Proc., 56, No. 2, 134–139 (2020), https://doi.org/10.3103/S8756699020020053.

    Article  ADS  Google Scholar 

  17. Y. Zhu, W. Xu, and Y. Shi, Opt. Community, 435, 426–432 (2019), https://doi.org/10.1016/j.optcom.2018.11.040.

    Article  ADS  Google Scholar 

  18. P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, V. G. Rodin, and R. S. Starikov, Opt. Lasers Eng., 166, Article ID 107584 (2023), https://doi.org/10.1016/j.optlaseng.2023.107584.

  19. Y. Qin, Z. Wang, H. Wang, and Q. Gong, Opt. Laser Tech., 103, 93–98 (2018), https://doi.org/10.1016/j.optlastec.2018.01.018.

    Article  ADS  Google Scholar 

  20. S. Jiao, J. Feng, Y. Gao, T. Lei, and X. Yuan, Opt. Express, 28, 7301–7313 (2020), https://doi.org/10.1364/OE.383240.

    Article  ADS  Google Scholar 

  21. G. Unnikrishnan, J. Joseph, and K. Singh, Opt. Lett., 25, 887–889 (2000), https://doi.org/10.1364/OL.25.000887.

    Article  ADS  Google Scholar 

  22. B. Javidi, Opt. Eng., 39, Article ID 2031 (2000), https://doi.org/10.1117/11304844.

  23. V. V. Krasnov, S. N. Starikov, R. S. Starikov, and P. A. Cheremkhin, Russian Phys. J., 58, No. 10, 1394–1401 (2016), https://doi.org/10.1007/s11182-016-0661-7.

    Article  ADS  Google Scholar 

  24. P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, E. D. Minaeva, V. G. Rodin, and A. V. Shifrina, Proc. SPIE, 10679, 106791Y (2018), https://doi.org/10.1117/12.2307549.

    Article  Google Scholar 

  25. S. K. Sahoo, D. Tang, and C. Dang, Sci Rep., 7, Article ID 17895 (2017), https://doi.org/10.1038/s41598-017-17916-8.

  26. P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, V. G. Rodin, A. V. Shifrina, and R. S. Starikov, Laser Phys. Lett., 17, Article ID 025204 (2020), https://doi.org/10.1088/1612-202X/ab644c.

  27. N. N. Evtikhiev, V. V. Krasnov, I. D. Kuz'min, D. Yu. Molodtsov, V. G. Rodin, R. S. Starikov, and P. A. Cheremkhin, Optical Encoding of QR Codes in a Scheme with Spatially Incoherent Illumination Based on Two Micromirror Light Modulators, Kvant. Elektron., 50, No. 2, 195–196 (2020), https://doi.org/10.1070/QEL17139.

    Article  ADS  Google Scholar 

  28. X. Yu, H. Chen, J. Xiao, Y. Sun, X. Li, and K. Wang, Optics Commun., 510, Article ID 127889 (2022), https://doi.org/10.1016/j.optcom.2021.127889.

  29. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems, Nauka, Moscow (1979).

    MATH  Google Scholar 

  30. P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, V. G. Rodin, I. P. Ryabcev, A.V. Shifrina, and R. S. Starikov, Appl. Opt., 60, 7336–7345 (2021), https://doi.org/10.1364/ao.430968.

    Article  ADS  Google Scholar 

  31. J. R. Fienup, Appl. Opt., 36, 8352–8357 (1997), https://doi.org/10.1364/AO.36.008352.

    Article  ADS  Google Scholar 

  32. N. K. Nishchal, Optical Cryptosystems, IOP Publishing, (2019), https://doi.org/10.1088/978-0-7503-2220-1.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Rymov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 6, pp. 21–26, June, 2023. https://doi.org/10.32446/0368-1025it.2023-6-21-26.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rymov, D.A., Shifrina, A.V., Cheremkhin, P.A. et al. Holographic Encryption of Color Video Stream with 4k Resolution Using Phase Liquid Crystal Light Modulators. Meas Tech 66, 392–397 (2023). https://doi.org/10.1007/s11018-023-02239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-023-02239-0

Keywords

Navigation