Skip to main content
Log in

Temperature Distribution Measurement in Polymer Composite Pipes During Their Heat Treatment with the Use of Microwave Radiation

  • THERMAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

A method is proposed for constructing radial type microwave devices forming a uniform temperature distribution throughout the volume of pipes made of polymer composite materials The results of theoretical and experimental investigations of the temperature distribution across the thickness of the pipe material are given. The advantages of microwave technologies for curing polymer composite materials compared to traditional methods are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. A. A. Berlin, “Modern polymer composite materials,” Soros. Obraz. Zh., No. 1, 57–65 (1995).

  2. M. L. Kerber, V. M. Vinogradov, and G. S. Golovkin, Polymer Composite Materials: Structure, Properties, Technology: Teach. Aid, A. A. Berlin (ed.), Professiya, St. Petersburg (2008).

    Google Scholar 

  3. Yu. A. Mikhailin, Thermostable Polymers and Polymer Materials, Professiya, St. Petersburg (2006).

    Google Scholar 

  4. K. E. Perepelkin, “Reinforcing fibers and fiber-reinforced polymer composites,” Nauch. Osn. Tekhnol., Moscow (2009).

  5. Yu. A. Mikhailin, “Special polymer composite materials,” Nauch. Osn. Tekhnol., Professiya, St. Petersburg (2009).

  6. I. V. Kubrakova, “Microwave radiation in analytical chemistry. Possibiities and prospects of use,” Usp. Khimii, 71, No. 4, 327–340 (2002).

    Google Scholar 

  7. F. A. Shakhov, S. I. Maslennikov, M. S. Kireeva, et al., Proc. 4th Int. Conf. High Chemical Technology, Volgograd (1996), p. 95.

  8. D. L. Rakhmankulov, I. Kh. Bikbulatov, N. S. Shulaev, and S. Yu. Shavshukova, Microwave Radiation and Intensification of Chemical Processes, Khimiya, Moscow (2003).

    Google Scholar 

  9. B. Bolasodun, A. Nesbitt, A. Wikinson, and R. Day, “Effect of curing method on physical and mechanical properties of araldite DLS 772/4 4 DDs epoxy system,” Int. J. Sci. Tech. Res., 2, No. 2, 12–18 (2013).

    Google Scholar 

  10. D. J. Hill, G. A. Geoge, and D. G. Rogers, “A systematic study of the micrdowave and thermal cure kinetics of the DGEBA/DDS and DGEBA/DDM epoxy-amine resin systems,” Polym. Adv. Tech., No. 13(5), 353–362 (2002).

  11. J. Wei, M. C. Hawley, J. D. Delon, and M. Demeuse, “Comparison of microwave and thermal cure of epoxy resins,” Polym. Eng. Sci., No. 33(17), 1132–1140 (1993).

  12. E. Okress, Microwave Power Engineering, Mir, Moscow (1971).

    Google Scholar 

  13. A. V. Mamontov, V. N. Nefedov, I. V. Nazarov, and T. A. Potapova, Microwave Technologies: Monograph, NIIPMT MIEM, Moscow (2008).

    Google Scholar 

  14. V. N. Nefedov, “Modern technologies of composite materials heat treatment,” Life Sci. J., 11, No. 8, 512–515 (2014).

    Google Scholar 

  15. V. A. Lavrent’ev and S. G. Kalganova, “Use of microwave electromagnetic vibrations for acting on the process of curing epoxy resins,” Electrical and Thermal Technological Processes and Devices: Coll. Sci. Works, SGTU, Saratov (2005), Vol. 2, pp. 67–70.

  16. V. A. Lavrent’ev and S. G. Kalganova, “Effect of the conditions of microwave curing on strength properties of an epoxy compound,” Problems of Electric Power Engineering: Coll. Sci. Works, SGTU, Saratov (2008), pp. 133–138.

  17. P. Navabpour, A. Nesbit, B. Degamber, et al., “Comparison of the curing kinetics of a DGEBA/acid anhydride epoxy resin system using differential scanning calorimetry and a microwave-heated calorimeter,” J. Appl. Polym. Sci., No. 104(3), 2054–2063 (2007).

  18. T. A. Guseva, Improvement of the Technological Conditions of Curing Blanks of Parts Made of Organoplastics under the Effect of Microwave Radiation: Auth. Abstr. Disert. Cand. Tech. Sci., MGTU im. Baumana, Moscow (2014).

  19. V. N. Nefedov, G. G. Valeev, S. V. Korneev, and Yu. V. Karpenko, Patent 2060600 RF, “Conveyor-type microwave oven,” Izobreteniya, No. 5 (1996).

  20. A. Z. Fradin, Antenna Feeder Devices, Svyaz, Moscow (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Nefedov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 3, pp. 42–46, March, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nefedov, V.N., Mamontov, A.V., Simonov, V.P. et al. Temperature Distribution Measurement in Polymer Composite Pipes During Their Heat Treatment with the Use of Microwave Radiation. Meas Tech 61, 265–270 (2018). https://doi.org/10.1007/s11018-018-1419-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-018-1419-0

Keywords

Navigation