Skip to main content
Log in

Method for Measuring the Polarizability of Cells in an Inhomogeneous Alternating Electric Field

  • MEDICAL AND BIOLOGICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

The experimental method is described and the measurement results of the value of polarizability of erythrocytes and latex particles in a non-uniform alternating electric field are presented. The results show that the values of experimentally measured and theoretically calculated polarizablity values of latex particles are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. M. V. Kruchinina, S. A. Kurilovich, A. A. Gromov, et al., “Pathology of the liver and heart of alcoholic genesis: generality and differences in the parameters of erythrocytes,” What is Siberian Health?: Proc.. 2nd Congr. of Therapists of Siberia and the Far East, Novosibirsk (2010), pp. 60–61.

  2. T. B. Jones, “Basic theory of dielectrophoresis and electrorotation,” IEEE Eng. Med. Biol. Mag., 22, No. 6, 33–42 (2003).

    Article  Google Scholar 

  3. V. F. Pastushenko, P. I. Kuz’min, and Yu. A. Chizmadzhev, “Dielectrophoresis and electrorotation of cells: a unified theory for spherical symmetric cells with an arbitrary membrane structure,” Biol. Membr., 5, No. 1, 65–78 (1988).

    Google Scholar 

  4. A. A. Potapov, Dielectric Method of Substance Research, Izd. Irkutsk. Univ., Irkutsk (1990).

    Google Scholar 

  5. L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 8, Electrodynamics of Continuous Media, Nauka, Moscow (1982).

  6. R. Feynman, R. Leyton, and M. Sands, The Feynman Lectures on Physics. Electricity and Magnetism [Russian translation], Mir, Moscow (1977), Vol. 5.

  7. G. H. Markx and C. L. Davey, “The dielectric properties of biological cells at radiofrequencies. Application in biotechnology,” Enzyme Microb. Tech., 25, No. 3–5, 161–171 (1999).

    Article  Google Scholar 

  8. S. M. Marchenko, O. A. Kryshtal’, V. A. Slepushkin, and A. G. Bukrinskaya, “Induced viral changes in the conductivity of the cell membrane,” Biol. Membr., 4, No. 7, 747–755 (1987).

    Google Scholar 

  9. M. P. Hughes, Nanoelectromechanics in Engineering and Biology, CRC PRESS Boca Raton, Boca Raton, London, N. Y., Washington, D. C. (2003).

    Google Scholar 

  10. V. M. Generalov, M. V. Kruchinina, A. G. Durymanov, et al., Dielectrophoresis in the Diagnosis of Infectious and Non-Infectious Diseases, TsERIS, Novosibirsk (2011).

    Google Scholar 

  11. V. M. Generalov, T. S. Bakirov, A. V. Pak, et al., “Automated device for measurement of viscoelastic characteristics of erythrocytes,” Naukoem. Tekhnol., 9, No. 12, 28–33 (2008).

    Google Scholar 

  12. L. Zaks, Statistical Estimation, Yu. P. Adler and V. G. Gorski (eds.), Statistika, Moscow (1976).

  13. I. S. Grigor’ev and E. Z. Melikhov (eds.), Physical Quantitites: Handbook, Energoatomizdat, Moscow (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izmeritel’naya Tekhnika, No. 1, pp. 56–59, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Generalov, K.V., Generalov, V.M., Kruchinina, M.V. et al. Method for Measuring the Polarizability of Cells in an Inhomogeneous Alternating Electric Field. Meas Tech 60, 82–86 (2017). https://doi.org/10.1007/s11018-017-1153-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-017-1153-z

Keywords

Navigation