Skip to main content
Log in

Approximate closed-form solutions for vibration of nano-beams of local/non-local mixture

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents an approach to natural vibration of nano-beams by a linear elastic constitutive law based on a mixture of local and non-local contributions, the latter based on Eringen’s model. A perturbation in terms of an evolution parameter lets incremental field equations be derived; another perturbation in terms of the non-local volume fraction yields the variation of the natural angular frequencies and modes with the ‘small’ amount of non-locality. The latter perturbation does not need to comply with the so-called constitutive boundary conditions, the physical interpretation of which is still debated. The possibility to find closed-form solutions is highlighted following a thorough discussion on the compatibility conditions needed to solve the steps of the perturbation hierarchy; some paradigmatic examples are presented and duly commented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. More precisely, quasi-continua, since distances shorter than the so-called scale parameter have no physical meaning [18].

  2. Here ‘long’ stands for ‘with much larger radius of molecular activity than that of local elasticity’.

  3. It is enough to suppose geometric and material symmetry of the cross-sections about the y-axis, and all loads to lie on the yz plane.

References

  1. Capecchi D, Ruta G, Trovalusci P (2010) From classical to Voigt’s molecular models in elasticity. Arch Hist Exact Sci 64:525–559

    Article  MathSciNet  MATH  Google Scholar 

  2. Capecchi D, Ruta G, Trovalusci P (2011) Voigt and Poincaré’s mechanistic-energetic approaches to linear elasticity and suggestions for multiscale modelling. Arch Appl Mech 81:1573–1585

    Article  MATH  Google Scholar 

  3. Capecchi D, Ruta G (2015) Strength of materials and theory of elasticity in 19th century Italy. Springer, Cham

    Book  MATH  Google Scholar 

  4. Navier CL (1827) Mémoire sur les lois de l’équilibre et du mouvement des corps solides élastiques. Mémoires de l’Académie des Sci de l’Institut de Fr 7:375–393

    Google Scholar 

  5. Cauchy A (1828) Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide, élastique ou nonélastique. Exerc de Mathématiques 3:160–187

    Google Scholar 

  6. Poisson CLMH (1828) Mémoire sur l’équilibre et le mouvement des corps élastiques. Mémoires de l’Académie des Sci de l’Institut de Fr 8(2):357–570

    Google Scholar 

  7. Green G (1842) On the laws of the reflexion and refraction of light at the common surface of two non-crystallized media. Trans Camb Philos Soc 7:1–24

    Google Scholar 

  8. Dell’Isola F, Della Corte A, Esposito R, Russo L (2016) Generalized continua as models for classical and advanced materials. In: Some cases of unrecognized transmission of scientific knowledge: from antiquity to gabrio piola’s peridynamics and generalized continuum theories. Advanced Structured Materials. Springer

  9. Cosserat EMP, Cosserat F (1909) Théorie des corps déformables. A. Hermann, Paris

    MATH  Google Scholar 

  10. Voigt W (1900) L’état actuel de nos connaissances sur l’élasticité des cristaux. Rapports présentés au Congrés international de Physique. Gauthier-Villars, Paris

    Google Scholar 

  11. Poincaré H (1892) Leçons sur la théorie de l’élasticité. Carré, Paris

    MATH  Google Scholar 

  12. Wieghardt K (1922) Über den balken auf nachgiebiger unterlage. Zeitschrift für angewandte mathematik und mechanik - ZAMM 2(3):165–184 (in German)

    Article  MATH  Google Scholar 

  13. Love AEH (1906) A treatise on the mathematical theory of elasticity. At the University Press, Cambridge, 2. edition

  14. Ridha AA, Raad MF, Nadhim MF (2019) Nano composite - introduction & application. Noor Publishing/Omniscriptum, Chisinau, Moldova

    Google Scholar 

  15. Trovalusci P (2015) Discrete to Scale-Dependent Continua for Complex Materials: A Generalized Voigt Approach Using the Virtual Power Equivalence in Materials with Internal Structure: Multiscale and Multifield Modeling and Simulation. Springer Tracts in Mechanical Engineering. Springer International Publishing

  16. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press

    Book  MATH  Google Scholar 

  17. Reccia E, Leonetti L, Trovalusci P, Cecchi A (2018) A multiscale/multidomain model for the failure analysis of masonry walls: a validation with a combined fem/dem approach. Int J Multiscale Comput Eng 16:325–343

    Article  Google Scholar 

  18. Kunin IA (1982) Elastic media with microstructure I: one-dimensional models. Springer

    Book  MATH  Google Scholar 

  19. Maugin GA (1979) Nonlocal theories or gradient-type theories: a matter of convenience. Arch Mech 31(1):15–26

    MathSciNet  MATH  Google Scholar 

  20. Eringen AC (1999) Microcontinuum field theory. Springer

    Book  MATH  Google Scholar 

  21. Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids. Int J Eng Sci 2(2):189–203

    Article  MathSciNet  MATH  Google Scholar 

  22. Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  MathSciNet  MATH  Google Scholar 

  23. Kröner E (1967) Elasticity theory of materials with long range cohesive forces. Int J Solids Struct 3(5):731–742

    Article  MATH  Google Scholar 

  24. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int Jo Eng Sci 10:233–248

    Article  MathSciNet  MATH  Google Scholar 

  25. Eringen AC (2002) Nonlocal continuum field theories, 1st edn. Springer

    MATH  Google Scholar 

  26. Kunin IA (1983) Elastic media with microstructure II: three-dimensional models. Springer, Cham

    Book  MATH  Google Scholar 

  27. Trovalusci P, Capecchi D, Ruta G (2008) Genesis of the multiscale approach for materials with microstructure. Arch Appl Mech 79(11):981

    Article  MATH  Google Scholar 

  28. Maugin GA (2010) Generalized continuum mechanics: What do we mean by that? Mechanics of generalized continua: one hundred years after the cosserats, advances in mechanics and mathematics 21. Springer, New York

    Google Scholar 

  29. Patrizia Trovalusci (2014) Molecular approaches for multifield continua: origins and current developments. Springer Vienna, Vienna

    Google Scholar 

  30. Mohamed Shaat, Esmaeal Ghavanloo, Ahmad Fazelzadeh V (2020) Review on nonlocal continuum mechanics: physics, material applicability, and mathematics. Mech Mater 150:103587

    Article  Google Scholar 

  31. Polizzotto C (2016) A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons. Int J Solids Struct 90:116–121

    Article  Google Scholar 

  32. Meral Tuna, Patrizia Trovalusci (2020) Scale dependent continuum approaches for discontinuous assemblies:"explicit" and “implicit” non-local models. Mech Res Commun 103:103461

    Article  Google Scholar 

  33. Tuna M, Leonetti L, Trovalusci P, Kirca M (2020) “Explicit” and “implicit” non-local continuous descriptions for a plate with circular inclusion in tension. Meccanica 55:927–944

    Article  MathSciNet  Google Scholar 

  34. Eringen AC (1966) A unified theory of thermomechanical materials. Int J Eng Sci 4(2):179–202

    Article  MathSciNet  MATH  Google Scholar 

  35. Eringen AC (1977) Screw dislocation in non-local elasticity. J Phys D Appl Phys 10(5):671–678

    Article  Google Scholar 

  36. Aydogdu M (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E 41(9):1651–1655

    Article  Google Scholar 

  37. Roque CMC, Ferreira AJM, Reddy JN (2011) Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int J Eng Sci 49(9):976–984

    Article  MATH  Google Scholar 

  38. Uymaz B (2013) Forced vibration analysis of functionally graded beams using nonlocal elasticity. Compos Struct 105:227–239

    Article  Google Scholar 

  39. Aranda-Ruiz J, Loya J, Fernández-Sáez J (2012) Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos Struct 94(9):2990–3001

    Article  Google Scholar 

  40. Mao JJ, Lu HM, Zhang W, Lai SK (2020) Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory. Compos Struct 236:111813

    Article  Google Scholar 

  41. Maysam Naghinejad and Hamid Reza Ovesy (2018) Free vibration characteristics of nanoscaled beams based on nonlocal integral elasticity theory. J Vib Control 24(17):3974–3988

    Article  MathSciNet  Google Scholar 

  42. Pei Z, Hai Q (2022) Free vibration analysis of Euler-Bernoulli curved beams using two-phase nonlocal integral models. J Vib Control 28:2861–2878

    Article  MathSciNet  Google Scholar 

  43. Pisano AA, Fuschi P, Polizzotto C (2021) Integral and differential approaches to Eringen’s nonlocal elasticity models accounting for boundary effects with applications to beams in bending. ZAMM - J Appl Math Mech/ Zeitschrift für Angewandte Mathematik und Mechanik 101(8):e202000152

    MathSciNet  Google Scholar 

  44. Challamel N, Wang CM (2008) The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19(34):345703

    Article  Google Scholar 

  45. Fernández-Sáez J, Zaera R, Loya JA, Reddy JN (2016) Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int J Eng Sci 99:107–116

    Article  MathSciNet  MATH  Google Scholar 

  46. Tuna M, Kirca M (2016) Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams. Int J Eng Sci 105:80–92

    Article  MathSciNet  MATH  Google Scholar 

  47. Tuna M, Kirca M (2016) Exact solution of Eringen’s nonlocal integral model for vibration and buckling of Euler-Bernoulli beam. Int J Eng Sci 107:54–67

    Article  MATH  Google Scholar 

  48. Romano G, Barretta R (2016) Comment on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams” by Meral Tuna and Mesut Kirca. Int J Eng Sci 109:240–242

    Article  MathSciNet  MATH  Google Scholar 

  49. Romano G, Barretta R, Diaco M, de Sciarra FM (2017) Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci 121:151–156

    Article  Google Scholar 

  50. Tuna M, Kirca M (2017) Respond to the comment letter by Romano and Barretta on the paper exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams. Int J Eng Sci 116:141–144

    Article  MathSciNet  MATH  Google Scholar 

  51. Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10:425–435

    Article  MATH  Google Scholar 

  52. Benvenuti E, Simone A (2013) One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect. Mech Res Commun 48:46–51

    Article  Google Scholar 

  53. Wang YB, Zhu XW, Dai HH (2016) Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Adv 6(8):085114

    Article  Google Scholar 

  54. Wang Y, Huang K, Zhu X, Lou Z (2019) Exact solutions for the bending of Timoshenko beams using Eringen’s two-phase nonlocal model. Math Mech Solids 24(3):559–572

    Article  MathSciNet  MATH  Google Scholar 

  55. Tuna M, Kirca M, Trovalusci P (2019) Deformation of atomic models and their equivalent continuum counterparts using Eringen’s two-phase local/nonlocal model. Mech Res Commun 97:26–32

    Article  Google Scholar 

  56. Eroğlu U (2020) Perturbation approach to Eringen’s local/non-local constitutive equation with applications to 1-d structures. Meccanica 55:1119–1134

    Article  MathSciNet  Google Scholar 

  57. Fernández-Sáez J, Zaera R (2017) Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory. Int J Eng Sci 119:232–248

    Article  MathSciNet  MATH  Google Scholar 

  58. Fakher M, Hosseini-Hashemi S (2020) Vibration of two-phase local/nonlocal Timoshenko nanobeams with an efficient shear-locking-free finite-element model and exact solution. Engineering with Computers, pages 232–248

  59. Fakher M, Hosseini-Hashemi S (2021) Nonlinear vibration analysis of two-phase local/nonlocal nanobeams with size-dependent nonlinearity by using Galerkin method. J Vib Control 27(3–4):378–391

    Article  MathSciNet  Google Scholar 

  60. Khaniki HB (2018) Vibration analysis of rotating nanobeam systems using Eringen’s two-phase local/nonlocal model. Physica E 99:310–319

    Article  Google Scholar 

  61. Zaera R, Serrano Ó, Fernández-Sáez J (2019) On the consistency of the nonlocal strain gradient elasticity. Int J Eng Sci 138:65–81

    Article  MathSciNet  MATH  Google Scholar 

  62. Barretta R, Marotti de Sciarra F (2019) Variational nonlocal gradient elasticity for nano-beams. Int J Eng Sci 143:73–91

    Article  MathSciNet  MATH  Google Scholar 

  63. Zaera R, Serrano Ó, Fernández-Sáez J (2020) Non-standard and constitutive boundary conditions in nonlocal strain gradient elasticity. Meccanica 55:469–479

    Article  MathSciNet  MATH  Google Scholar 

  64. Ceballes S, Larkin K, Rojas E, Ghaffari SS, Abdelkefi A (2022) Nonlocal elasticity and boundary condition paradoxes: a review. J Nanopart Res 23:66

    Article  Google Scholar 

  65. Pignataro M, Rizzi N, Luongo A (1991) Stability, bifurcation and postcritical behaviour of elastic structures. Elsevier

  66. Ruta G, Pignataro M, Rizzi N (2006) A direct one-dimensional beam model for the flexural-torsional buckling of thin-walled beams. J Mech Mater Struct 1(8):1479–1496

    Article  Google Scholar 

  67. Pease MC (1965) Methods of matrix algebra. Academic Press, New York

    MATH  Google Scholar 

  68. Eroglu U, Ruta G, Tufekci E (2019) Natural frequencies of parabolic arches with a single crack on opposite cross-section sides. J Vib Control 25(7):1313–1325

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was initiated when U. Eroglu was Visiting Professor at the Dipartimento d’ingegneria strutturale e geotecnica of the University of Rome “La Sapienza”, the support of which under the grant ‘Professore visitatore 2020’ CUP B82F20001090001 is gratefully acknowledged. G. Ruta acknowledges the financial support of the institutional grants RM11916B7ECCFCBF and RM12017294D1B7EF of the University “La Sapienza”, Rome, Italy, and of the Italian national research grant PRIN 20177TTP3S-006 from Italian Ministry of University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğurcan Eroğlu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Details and passages

Appendix: Details and passages

In the following subsections we will present with more detail some of the passages omitted in the text for sake of space and readability.

1.1 Perturbation expansion

The governing equations for free vibration of Euler-Bernoulli nanobeams composed of the above described mixture of linear local and nonlocal elastic materials in terms of nondimensional quantities are obtained by replacing Eq. (9) into Eq. (8):

$$\begin{aligned} \begin{array}{*{20}{c}} \dfrac{dv}{dz}\!=\!-\Omega ,&{}\left( 1-\xi \right) \dfrac{d\Omega }{dz}\!+\!\xi K*\dfrac{d\Omega }{dz}\!=\!M,\\ \dfrac{dT}{dz}=-\lambda v,&{}\dfrac{dM}{dz}=T, \end{array} \end{aligned}$$
(1)

Inserting the formal power series expansions of the field functions and of the eigenvalue up to the second order in the nonlocal fraction \(\xi\) we have

$$\begin{aligned} \begin{array}{*{20}{l}} \dfrac{dv_0}{dz}+\xi \dfrac{dv_1}{dz}+\dfrac{\xi ^2}{2}\dfrac{dv_2}{dz}=\\ \qquad =-\Omega _0-\xi \Omega _1-\dfrac{\xi ^2}{2}\Omega _2,\\ \dfrac{d\Omega _0}{dz}+\xi \left( -\dfrac{d\Omega _0}{dz}+\dfrac{d\Omega _1}{dz}+K*\dfrac{d\Omega _0}{dz}\right) +\\ \qquad +\xi ^2\left( -\dfrac{d\Omega _1}{dz}+\dfrac{1}{2}\dfrac{d\Omega _2}{dz}+K*\dfrac{d\Omega _1}{dz} \right) =\\ \qquad =M_0+\xi M_1+\dfrac{\xi ^2}{2}M_2,\\ \dfrac{dT_0}{dz}+\xi \dfrac{dT_1}{dz}+\dfrac{\xi ^2}{2}\dfrac{dT_2}{dz}=-\lambda _0 v_0-\xi \left( \lambda _0v_1+\right. \\ \qquad \left. +\lambda _1v_0 \right) -\dfrac{\xi ^2}{2}\left( \lambda _0v_2+\lambda _1v_1+\lambda _2v_0 \right) ,\\ \dfrac{dM_0}{dz}+\xi \dfrac{dM_1}{dz}+\dfrac{\xi ^2}{2}\dfrac{dM_2}{dz}=T_0+\xi T_1+\dfrac{\xi ^2}{2}T_2, \end{array} \end{aligned}$$
(2)

By collecting like powers of \(\xi\) we obtain the expressions reported in Eqs. (13)–(15).

1.2 Fundamental matrix

For \(z_0=0\), the components of the fundamental matrix \(\mathbf{{Y}}(z,0)\) are listed below.

$$\begin{aligned} \begin{array}{l} {Y_{11}} = \dfrac{1}{2}\left( {\cos \lambda _0^{1/4}z + \cosh \lambda _0^{1/4}z} \right) \\ {Y_{12}} = - \dfrac{{\sin \lambda _0^{1/4}z + \sinh \lambda _0^{1/4}z}}{{2\lambda _0^{1/4}}}\\ {Y_{13}} = \dfrac{{\sin \lambda _0^{1/4}z - \sinh \lambda _0^{1/4}z}}{{2\lambda _0^{3/4}}}\\ {Y_{14}} = \dfrac{{\cos \lambda _0^{1/4}z - \cosh \lambda _0^{1/4}z}}{{2\lambda _0^{1/2}}},\quad Y_{21}=\lambda _0Y_{13},\\ Y_{22}=Y_{11},\quad Y_{23}=-Y_{14},\quad Y_{24}=-Y_{12}\\ Y_{31}=\lambda _0Y_{12},\quad Y_{32}=-\lambda _0Y_{14},\quad Y_{33}=Y_{11}\\ Y_{34}=-\lambda _0Y_{13},\quad Y_{41}=\lambda _0Y_{14},\quad Y_{42}=-\lambda _0Y_{13}\\ Y_{43}=-Y_{12},\quad Y_{44}=Y_{11}. \end{array} \end{aligned}$$
(3)

1.3 Orthogonality of the eigenmodes

By using the inner product defined in Eq. (20), the condition of orthogonality for the family of eigensolutions \(\{M_0^j\}\) associated with the j-th eigenvalue \(\lambda _0^j\) is

$$\begin{aligned} \left\langle DM_0^l,M_0^m\right\rangle \!=\!\!\int _{0}^{1}\!\!\left[ (M_0^l)^{IV}\!M_0^m\!-\!\lambda _0^lM_0^lM_0^m\right] \!dz\!=\!0 \end{aligned}$$
(4)

This may be written, by the aid of variational principles,as

$$\begin{aligned} \begin{array}{l} \!\left\langle DM_0^l,M_0^m\right\rangle \!=\!\!\int _{0}^{1}\!\!\left[ (M_0^l)^{\prime \prime }(M_0^m)^{\prime \prime }\!-\!\lambda _0^lM_0^l M_0^m \right] \!dz\\ \quad +\left[ (M_0^l)^{\prime \prime \prime }M_0^m-(M_0^l)^{\prime \prime }(M_0^m)^\prime ) \right] _0^1 \end{array} \end{aligned}$$
(5)

In the previous equation, the boundary terms vanish due to Eq. (27); then, easy calculations show that

$$\begin{aligned} \left\langle M_0^l,DM_0^m\right\rangle =\int _{0}^{1}\left[ (M_0^l)^{\prime \prime }(M_0^m)^{\prime \prime }-\lambda _0^mM_0^l M_0^m \right] \end{aligned}$$
(6)

Then, by subtraction of the previous two equations,

$$\begin{aligned} \begin{array}{l} \left\langle DM_0^l,M_0^m\right\rangle -\left\langle M_0^l,DM_0^m\right\rangle =\\ \quad =(\lambda _0^m-\lambda _0^l)\int _{0}^{1}M_0^lM_0^mdz=0 \end{array} \end{aligned}$$
(7)

By recalling Eq. (20) and accounting for the inequality \(\lambda _0^m\ne \lambda _0^l\ \forall \,l\ne m\), the last equality of the previous equation leads to the searched orthogonality condition

$$\begin{aligned} \left\langle M_0^l,M_0^m\right\rangle =0 \end{aligned}$$
(8)

1.4 Fredholm Compatibility

Inserting the eigensolution expansion into the first-order equation for the \(l^{th}\) mode gives

$$\begin{aligned} \begin{array}{l} (M_0^l)^{IV}+\sum \limits _{l\ne j}b_{lj}(M_0^j)^{IV}-\lambda _0^lM_0^l-\lambda _0^l\sum \limits _{l\ne j}b_{lj}M_0^j=\\ =(M_0^l)^{IV}-K*(M_0^l)^{IV}+\lambda _1 M_0^l \end{array} \end{aligned}$$
(9)

Inserting in Eq. (9) the zeroth-order field equation, Eq. (22)-1, we obtain

$$\begin{aligned} \begin{array}{l} \sum \limits _{l\ne j}b_{lj}\lambda _0^jM_0^j\!-\!\lambda _0^l\sum \limits _{l\ne j}b_{lj}M_0^j\!=\!\\ \quad =\lambda _0^lM_0^l\!-\!K\!*\!(\lambda _0^lM_0^l)\!+\!\lambda _1^lM_0^l \end{array} \end{aligned}$$
(10)

Multiplying both sides by \(M_0^m\) gives

$$\begin{aligned} \begin{array}{l} \sum \limits _{l\ne j}b_{lj}\lambda _0^jM_0^jM_0^m\!-\!\lambda _0^l\sum \limits _{l\ne j}b_{lj}M_0^jM_0^m\!=\\ \quad =\!\lambda _0^lM_0^lM_0^m\!-\!\lambda _0^l(K\!*\!M_0^l)M_0^m\!+\!\lambda _1^lM_0^lM_0^m \end{array} \end{aligned}$$
(11)

and integrating both sides over the domain provides, in terms of the inner product defined in Eq. (20),

$$\begin{aligned} \begin{array}{l} \sum \limits _{l\ne j}b_{lj}\lambda _0^j\left\langle M_0^j,M_0^m\right\rangle -\lambda _0^l\sum \limits _{l\ne j}b_{lj}\left\langle M_0^j,M_0^m\right\rangle =\\ \quad =\lambda _0^l\left\langle M_0^l,M_0^m\right\rangle -\lambda _0^l\left\langle (K\!*\!M_0^l),M_0^m\right\rangle \\ \quad +\lambda _1^l\left\langle M_0^l, M_0^m\right\rangle \end{array} \end{aligned}$$
(12)

When \(l=m\) we have

$$\begin{aligned} \begin{array}{l} \sum \limits _{m\ne j}b_{mj}\lambda _0^j\left\langle M_0^j,M_0^m\right\rangle -\lambda _0^m\sum \limits _{m\ne j}b_{mj}\left\langle M_0^j,M_0^m\right\rangle =\\ \quad =\lambda _0^m\left\langle M_0^m,M_0^m\right\rangle -\lambda _0^m\left\langle (K\!*\!M_0^m),M_0^m\right\rangle +\\ \quad +\lambda _1^m\left\langle M_0^m,M_0^m\right\rangle \end{array} \end{aligned}$$
(13)

Exploiting the orthogonality of eigensolutions proved above, \(\forall j\ne m, \left\langle M_0^m,M_0^j \right\rangle =0\), Eq. (13) turns out to be

$$\begin{aligned} \begin{array}{l} \lambda _0^m\left\langle M_0^m,M_0^m\right\rangle -\lambda _0^m\left\langle (K\!*\!M_0^m),M_0^m\right\rangle +\\ \quad +\lambda _1^m\left\langle M_0^m,M_0^m\right\rangle =0 \end{array} \end{aligned}$$
(14)

which provides Eq. (37).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroğlu, U., Ruta, G. Approximate closed-form solutions for vibration of nano-beams of local/non-local mixture. Meccanica 57, 3033–3049 (2022). https://doi.org/10.1007/s11012-022-01612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01612-7

Keywords

Navigation