Skip to main content
Log in

Derivation of a model of imperfect interface with finite strains and damage by asymptotic techniques: an application to masonry structures

  • New Trends in Mechanics of Masonry
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The proposed study aims to derive an imperfect interface model which couples finite strain and damaging. The governing equations are obtained via an asymptotic approach within the finite strain theory. Theoretical findings have been numerically validated within an original application to brick/mortar interfaces in masonry walls in shear loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Methods Eng 68(5):542–582

    Article  MathSciNet  MATH  Google Scholar 

  2. Anthoine A (1999) Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int J Solid Struct 32(2):137–163

    Article  MATH  Google Scholar 

  3. Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33(6):309–323

    Article  Google Scholar 

  4. Bonetti E, Bonfanti G, Lebon F, Rizzoni R (2016) A model of imperfect interface with damage. Meccanica 52(8):1911–1922

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonetti E, Bonfanti G, Rossi R (2014) Analysis of a temperature-dependent model for adhesive contact with friction. Physica D 285:42–62

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bonetti E, Bonfanti G, Rossi R (2015) Modeling via the internal energy balance and analysis of adhesive contact with friction in thermoviscoelasticity. Nonlinear Anal Real World Appl 22:473–507

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet PG (1988) Mathematical elasticity. Volume I: three-dimensional elasticity. North-Holland, Amsterdam

    MATH  Google Scholar 

  8. Dumont S, Lebon F, Rizzoni R (2014) An asymptotic approach to the adhesion of thin stiff films. Mech Res Commun 58:24–35

    Article  Google Scholar 

  9. Fileccia Scimeni G, Giambanco G, Spada A (2014) The interphase model applied to the analysis of masonry structures. Comput Methods Appl Mech Eng 279:6685

    MathSciNet  Google Scholar 

  10. Fouchal F, Lebon F, Raffa ML, Vairo G (2014) An interface model including cracks and roughness applied to masonry. Open Civ Eng J 8(1):263–271

    Article  Google Scholar 

  11. Fouchal F, Lebon F, Titeux I (2009) Contribution to the modelling of interfaces in masonry construction. Constr Build Mater 23:2428–2441

    Article  Google Scholar 

  12. Frémond M (2001) Non-smooth thermo-mechanics. Springer, Berlin

    Google Scholar 

  13. Gambarotta L, Lagomarsino S (1997) Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its applications. Earthq Eng Struct 26(4):423–439

    Article  Google Scholar 

  14. Geymonat G, Krasucki F, Lenci S (1999) Mathematical analysis of a bonded joint with a soft thin adhesive. Math Mech Solid 4(2):201–225

    Article  MathSciNet  MATH  Google Scholar 

  15. Giambanco G, Rizzo S, Spallino R (2001) Numerical analysis of masonry structures via interface models. Comput Methods Appl Mech Eng 190:64936511

    Article  MATH  Google Scholar 

  16. Giambanco G, Fileccia Scimeni G, Spada A (2012) The interphase finite element. Comput Mech 50:353366

    Article  MathSciNet  MATH  Google Scholar 

  17. Hashin Z (2002) Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J Mech Phys Solid 50(12):2509–2537

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Klarbring A (1991) Derivation of the adhesively bonded joints by the asymptotic expansion method. Int J Eng Sci 29:493–512

    Article  MathSciNet  MATH  Google Scholar 

  19. Lebon F, Ould Khaoua A, Licht C (1998) Numerical study of soft adhesively bonded joints in finite elasticity. Comput Mech 21:134–140

    Article  MATH  Google Scholar 

  20. Lebon F, Rizzoni R (2008) Asymptotic study on a soft thin layer: The non-convex case. Mech Adv Mater Struct 15:12–20

    Article  Google Scholar 

  21. Lebon F, Rizzoni R (2010) Asymptotic analysis of a thin interface: the case involving similar rigidity. Int J Eng Sci 48:473–486

    Article  MathSciNet  MATH  Google Scholar 

  22. Lebon F, Rizzoni R (2011) Asymptotic behavior of a hard thin linear elastic interphase: an energy approach. Int J Solid Struct 48:441–449

    Article  MATH  Google Scholar 

  23. Lebon F, Ronel-Idrissi S (2004) Asymptotic analysis of Drucker–Prager and Mohr–Coulomb soft thin interfaces. Steel Comp Struct 4:133–147

    Article  Google Scholar 

  24. Lebon F, Zaittouni S (2010) Asymptotic modelling of interfaces taking contact conditions into account: asymptotic expansions and numerical implementation. Int J Eng Sci 48:111–127

    Article  Google Scholar 

  25. Lourenço P (1996) Computational strategies for masonry structures. Ph.D. thesis, Faculdade de engenharia da Universidade do Porto

  26. Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660–668

    Article  Google Scholar 

  27. Lourenço PB, Rots JG, Blaauwendraad J (1998) Continuum model for masonry: parameter estimation and validation. J Struct Eng 124(6):642–652

    Article  Google Scholar 

  28. Lotfi HR, Shing PB (1994) Interface model applied to fracture of masonry structures. J Struct Eng 120(1):63–80

    Article  Google Scholar 

  29. Mauge C, Kachanov M (1994) Effective elastic properties of an anisotropic material with arbitrarily oriented interacting cracks. J Mech Phys Solid 42:561–584

    Article  ADS  MATH  Google Scholar 

  30. Medeiros P, Vasconcelos G, Loureno PB, Gouveia J (2013) Numerical modelling of non-confined and confined masonry walls. Constr Build Mater 41:968–976

    Article  Google Scholar 

  31. Milani G, Loureno PB, Tralli A (2006) Homogenised limit analysis of masonry walls, part I: failure surfaces. Comput Struct 84(3–4):166–180

    Article  Google Scholar 

  32. Orefice A, Mancusi G, Lebon F, Dumont S (2016) An experimental/numerical study on the interfacial damage of bonded joints for fibre-reinforced polymer profiles at service conditions. Technologies 4(3):20

    Article  Google Scholar 

  33. Pelissou C, Lebon F (2009) Asymptotic modeling of quasi-brittle interfaces. Comput Struct 87:1216–1223

    Article  Google Scholar 

  34. Raffa ML (2015) Micromechanical modeling of imperfect interfaces and applications. Ph.D. thesis, University of Rome Tor Vergata and Aix-Marseille University

  35. Raffa ML, Lebon F, Rizzoni R (2016) On modelling brick/mortar interface via a St. Venant-Kirchhoff orthotropic soft interface. Part I: theory. Int J Mason Res Innov 1(2):142–164

    Article  Google Scholar 

  36. Raffa ML, Lebon F, Rizzoni R (2017) On modelling brick/mortar interface via a St. Venant-Kirchhoff orthotropic soft interface. Part II: in silico analysis. Int J Mason Res Innov 2(4)

  37. Rekik A, Lebon F (2010) Identification of the representative crack length evolution in a multi-level interface model for quasi-brittle masonry. Int J Solid Struct 47(22–23):3011–3021

    Article  MATH  Google Scholar 

  38. Rekik A, Lebon F (2012) Homogenization methods for interface modeling in damaged masonry. Adv Eng Softw 46(1):35–42

    Article  Google Scholar 

  39. Rizzoni R, Lebon F (2012) Asymptotic analysis of an adhesive joint with mismatch strain. Eur J Mech A/Sol 36:1–8

    Article  MathSciNet  MATH  Google Scholar 

  40. Rizzoni R, Lebon F (2013) Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases. Mech Res Commun 51:39–50

    Article  Google Scholar 

  41. Rizzoni R, Dumont S, Lebon F (2017) On Saint Venant-Kirchhoff imperfect interfaces. Int J Nonlinear Mech 89:101–115

    Article  Google Scholar 

  42. Rizzoni R, Dumont S, Lebon F, Sacco S (2014) Higher order model for soft and hard interfaces. Int J Solid Struct 51:4137–4148

    Article  Google Scholar 

  43. Rots JG (1991) Numerical simulation of cracking in structural masonry. Heron 36(2):49–63

    Google Scholar 

  44. Sacco E (2009) A nonlinear homogenization procedure for periodic masonry. Eur J Mech A Solids 28(2):209–222

    Article  MATH  Google Scholar 

  45. Serpilli M (2014) Asymptotic analysis of a multimaterial with a thin piezoelectric interphase. Meccanica 49(7):1641–1652

    Article  MathSciNet  MATH  Google Scholar 

  46. Sevostianov I, Kachanov M (2014) On some controversial issues in effective field approaches to the problem of the overall elastic properties. Mech Mater 69:93–105

    Article  Google Scholar 

  47. Tsukrov I, Kachanov M (2000) Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution. Int J Solid Struct 37(41):5919–5941

    Article  MathSciNet  MATH  Google Scholar 

  48. Vermeltfoort AT, Raijmakers TMJ (1992) Shear tests on masonry panels of 1x1 m2. In: Vermeltfoort AT (ed) Research on building structures and building physics: proceedings of an interuniversity research seminar. University of Technology, Eindhoven, pp 171–177

    Google Scholar 

  49. Vermeltfoort AT, Raymakers TMJ, Janssen HJM (1993) Shear tests on masonry walls. In: Hamid AA, Harris HG (eds) 6th North American Masonry Conference, 6–9 June 1993. Technomic Publ. Co., Lancaster, pp 1183–1193

    Google Scholar 

  50. Zucchini A, Lourenço PB (2002) A micro-mechanical model for the homogenisation of masonry. Int J Solid Struct 39(12):3233–3255

    Article  MATH  Google Scholar 

  51. Zucchini A, Lourenço PB (2009) A micro-mechanical homogenisation model for masonry: application to shear walls. Int J Solid Struct 46(3–4):871–886

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Vinci Program 2013 (no. C2-73) of Italo-Francese University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Letizia Raffa.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raffa, M.L., Lebon, F. & Rizzoni, R. Derivation of a model of imperfect interface with finite strains and damage by asymptotic techniques: an application to masonry structures. Meccanica 53, 1645–1660 (2018). https://doi.org/10.1007/s11012-017-0765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0765-3

Keywords

Navigation