Skip to main content
Log in

A geometric approach for forward kinematics analysis of a 3-SPS/S redundant motion manipulator with an extra sensor using conformal geometric algebra

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper proposes a geometric approach for forward kinematics analysis of a 3-SPS/S redundant motion mechanism using conformal geometric algebra (CGA). The forward kinematics of a parallel kinematic mechanism is generally very complicated and difficult to analyze. The proposed geometric method is useful because it provides simple, fast, and complete solutions to the problem and helps determine the relationship between the joints and end-effector without an iterative process. Thus, we introduce a geometric approach using CGA in an intuitive, stepwise fashion. We also use an extra sensor to provide more positional information, thereby allowing a unique solution to be selected geometrically from among the multiple solutions found using the geometric approach. In the mechanism considered herein, three identical legs linked by prismatic actuators are attached to a moving platform and to the base by two passive spherical joints. A passive leg is present at the center of the mechanism; it connects the center of the base to the platform, constraining the platform’s movement. The added components constrain the movement of the platform, making it possible to analyze the mechanism using a geometric approach. Herein we present performance comparisons that validate use of the proposed approach in real-time applications and demonstrate its low computational load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

O :

Position of spherical joint on the 1-S subchain

B 0 :

Center position of moving platform

A (x A , y A , z A ):

Base coordinate system fixed on O

B (x B , y B , z B ):

Output coordinate system fixed on O

α :

Offset angle between axis x A and axis x B

β i :

Angle between axis x A and point A i (i = 1, 2, 3)

γ i :

Angle between axis x B and point B i (i = 1, 2, 3)

ε :

Angle between axis x A and point A 4

d A :

Distance between points O and A 0

d B :

Distance between points O and B 0

References

  1. Gough V (1956) Contribution to discussion of papers on research in automobile stability, control and tyre performance. In: Proceedings of automobile division, institution of mechanical engineering, pp 392–394

  2. Merlet JP (1999) The importance of optimal design for parallel structures. In: Boër CR, Molinari-Tosatti L, Smith KS (eds) Parallel kinematic machines. Advanced manufacturing. Springer, London, pp 99–110. doi:10.1007/978-1-4471-0885-6_7

    Chapter  Google Scholar 

  3. Zavala-Yoé R, Ramírez-Mendoza RA, Chaparro-Altamirano D (2015) Kinematic and dynamical modelling for control of a parallel robot-based surveillance/sentry device. Adv Mil Technol 10(1):15–30

    Google Scholar 

  4. Di Gregorio R (2004) Statics and singularity loci of the 3-UPU wrist. IEEE Trans Robot 20(4):630–635. doi:10.1109/TRO.2004.829475

    Article  Google Scholar 

  5. Di Gregorio R (2001) A new parallel wrist using only revolute pairs: the 3-RUU wrist. Robotica 19(03):305–309

    Article  Google Scholar 

  6. Kong X, CmM Gosselin (2004) Type synthesis of 3-DOF spherical parallel manipulators based on screw theory. J Mech Des 126(1):101–108. doi:10.1115/1.1637655

    Article  Google Scholar 

  7. Zlatanov D, Bonev I, Gosselin C (2002) Constraint singularities as C-space singularities. In: Lenarčič J, Thomas F (eds) Advances in robot kinematics. Springer, The Netherlands, pp 183–192. doi:10.1007/978-94-017-0657-5_20

    Google Scholar 

  8. Alici G, Shirinzadeh B (2004) Topology optimisation and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint. Mech Mach Theory 39(2):215–235

    Article  MathSciNet  MATH  Google Scholar 

  9. Kim JS, Jeong JH, Park JH (2015) Inverse kinematics and geometric singularity analysis of a 3-SPS/S redundant motion mechanism using conformal geometric algebra. Mech Mach Theory 90:23–36

    Article  Google Scholar 

  10. Nanua P, Waldron KJ, Murthy V (1990) Direct kinematic solution of a Stewart platform. IEEE Trans Robot Autom 6(4):438–444. doi:10.1109/70.59354

    Article  Google Scholar 

  11. Merlet JP (1992) Direct kinematics and assembly modes of parallel manipulators. Int J Robot Res 11(2):150–162. doi:10.1177/027836499201100205

    Article  Google Scholar 

  12. Kok-Meng L, Shah DK (1988) Kinematic analysis of a three-degrees-of-freedom in-parallel actuated manipulator. IEEE J Robot Autom 4(3):354–360. doi:10.1109/56.796

    Article  Google Scholar 

  13. Wang Y (2007) A direct numerical solution to forward kinematics of general Stewart–Gough platforms. Robotica 25(01):121–128

    Article  Google Scholar 

  14. Gyuhong J, Kyoil L (1994) Real-time estimation of Stewart platform forward kinematic solution. Trans Korean Soc Mech Eng 18(7):1632–1642

    Google Scholar 

  15. Geng Z, Haynes L (1991) Neural network solution for the forward kinematics problem of a Stewart platform. In: Robotics and automation, 1991. Proceedings of IEEE international conference on 1991, vol 2653, 9–11 April 1991. pp 2650–2655. doi:10.1109/ROBOT.1991.132029

  16. Parikh P, Lam S (2009) Solving the forward kinematics problem in parallel manipulators using an iterative artificial neural network strategy. Int J Adv Manuf Technol 40(5–6):595–606. doi:10.1007/s00170-007-1360-x

    Article  Google Scholar 

  17. He J, Gu H, Wang Z (2012) Solving the forward kinematics problem of six-DOF Stewart platform using multi-task Gaussian process. Proc Inst Mech Eng C J Mech Eng Sci. doi:10.1177/0954406212444508

    Google Scholar 

  18. Parikh PJ, Lam SS (2005) A hybrid strategy to solve the forward kinematics problem in parallel manipulators. IEEE Trans Robot 21(1):18–25. doi:10.1109/TRO.2004.833801

    Article  Google Scholar 

  19. Gan D, Seneviratne L, Dias J (2012) Design and analytical kinematics of a robot wrist based on a parallel mechanism. In: World Automation Congress (WAC), 2012. IEEE, pp 1–6

  20. Kong X, Gosselin C, Ritchie JM (2011) Forward displacement analysis of a linearly actuated quadratic spherical parallel manipulator. J Mech Robot 3(1):011007.1–011007.6. doi:10.1115/1.4003079

    Article  Google Scholar 

  21. Merlet J-P (1993) Closed-form resolution of the direct kinematics of parallel manipulators using extra sensors data. In: Proceedings of IEEE international conference on robotics and automation, 1993. IEEE, pp 200–204

  22. Innocenti C (1998) Closed-form determination of the location of a rigid body by seven in-parallel linear transducers. J Mech Des 120(2):293–298

    Article  Google Scholar 

  23. Parenti-Castelli V, Di Gregorio R (2000) A new algorithm based on two extra-sensors for real-time computation of the actual configuration of the generalized Stewart–Gough manipulator. J Mech Des 122(3):294–298

    Article  Google Scholar 

  24. Sim J-G, Lee T-Y (2001) Real-time forward kinematics of the 6-6 Stewart platform with one extra linear sensor. Trans Korean Soc Mech Eng A 25(9):1384–1390

    Google Scholar 

  25. Bayro-Corrochano E, Reyes-Lozano L, Zamora-Esquivel J (2006) Conformal geometric algebra for robotic vision. J Math Imaging Vis 24(1):55–81. doi:10.1007/s10851-005-3615-1

    Article  MathSciNet  Google Scholar 

  26. Wareham R, Cameron J, Lasenby J (2005) Applications of conformal geometric algebra in computer vision and graphics. In: Computer algebra and geometric algebra with applications. Springer, Berlin, Heidelberg, pp 329–349

  27. Roa E, Theoktisto V, Fairén M, Navazo I (2011) GPU collision detection in conformal geometric space. In: V Ibero–American symposium in computer graphics SIACG, pp 153–157

  28. Hildenbrand D, Zamora J, Bayro-Corrochano E (2008) Inverse kinematics computation in computer graphics and robotics using conformal geometric algebra. AACA 18(3–4):699–713. doi:10.1007/s00006-008-0096-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Aristidou A, Lasenby J (2011) FABRIK: a fast, iterative solver for the inverse kinematics problem. Graph Models 73(5):243–260. doi:10.1016/j.gmod.2011.05.003

    Article  Google Scholar 

  30. Hestenes D (2003) Spacetime physics with geometric algebra. Am J Phys 71(7):691–714

    Article  ADS  Google Scholar 

  31. Tanev TK (2006) Singularity analysis of a 4-DOF parallel manipulator using geometric algebra. In: Lennarčič J, Roth B (eds) Advances in robot kinematics (Mechanisms and Motion). Springer, Netherlands, pp 275–284

    Chapter  Google Scholar 

  32. Hildenbrand D (2012) Foundations of geometric algebra computing, vol 8. Springer, Berlin, Heidelberg

  33. Zamora-Esquivel J (2011) G (6, 3) geometric algebra. In: 9th international conference on Clifford algebras and their applications in mathematical physics (Cité efinpage 128)

  34. Dorst L, Fontijne D, Mann S (2009) Geometric algebra for computer science (revised edition): an object-oriented approach to geometry. Morgan Kaufmann, Burlington

    Google Scholar 

  35. D’Orangeville C, Lasenby AN (2003) Geometric algebra for physicists. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. Bayro-Corrochano E (2005) Robot perception and action using conformal geometric algebra. In: Handbook of geometric computing. Springer, Berlin, Heidelberg, pp 405–458

  37. Hestenes D, Li H, Rockwood A (2001) New algebraic tools for classical geometry. In: Geometric computing with Clifford algebras. Springer, pp 3–26

  38. Tolani D, Goswami A, Badler NI (2000) Real-time inverse kinematics techniques for anthropomorphic limbs. Graph Models 62(5):353–388

    Article  MATH  Google Scholar 

  39. Kim H, Miller LM, Byl N, Abrams G, Rosen J (2012) Redundancy resolution of the human arm and an upper limb exoskeleton. IEEE Trans Biomed Eng 59(6):1770–1779

    Article  Google Scholar 

  40. Zamora J, Bayro-Corrochano E (2004) Inverse kinematics, fixation and grasping using conformal geometric algebra. In: Proceedings of 2004 IEEE/RSJ international conference on intelligent robots and systems, 2004 (IROS 2004), vol 3844, 28 Sept–2 Oct 2004, pp 3841–3846. doi:10.1109/IROS.2004.1390013

  41. Zhou H, Cao Y, Hu S, Xu L, Liu M (2010) The research on direct kinematic problem of the Stewart manipulators with two dissimilar semisymmetrical hexagons. In: Control and decision conference (CCDC), 2010 Chinese, 2010. IEEE, pp 1814–1819

  42. Merlet J-P (2006) Parallel robots, vol 128. Springer, Netherlands

    MATH  Google Scholar 

  43. Gallardo-Alvarado J, Camarillo-Gómez K, García-Murillo M (2013) A Gough/Stewart-type platform under a combined scheme of actuation. Int J Adv Manuf Technol 68(5–8):981–991

    Article  Google Scholar 

  44. Lee T-Y, Shim J-K (2001) Algebraic elimination-based real-time forward kinematics of the 6-6 Stewart platform with planar base and platform. In: Proceedings of IEEE international conference on robotics and automation, 2001, 2001 ICRA. 2001. IEEE, pp 1301–1306

  45. Doran CJ, Lasenby AN (2003) Geometric algebra for physicists. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  46. Rockwood A, Hildenbrand D (2010) Engineering graphics in geometric algebra. In: Bayro-Corrochano E, Scheuermann G (eds) Geometric algebra computing. Springer, London, pp 53–69

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Fund of Survivability Technology Defense Research Center of Agency for Defense Development of Korea (no. UD150013ID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahng Hyon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.S., Jeong, Y.H. & Park, J.H. A geometric approach for forward kinematics analysis of a 3-SPS/S redundant motion manipulator with an extra sensor using conformal geometric algebra. Meccanica 51, 2289–2304 (2016). https://doi.org/10.1007/s11012-016-0369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0369-3

Keywords

Navigation