Skip to main content
Log in

Linear free vibration in pre/post-buckled states and nonlinear dynamic stability of lipid tubules based on nonlocal beam model

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, considering the small scale effect, the linear free vibration in pre/post-buckled states and nonlinear dynamic stability of lipid tubules with in-plane movable ends are studied. The small scale effect is characterized by nonlocal elasticity theory. The vibration in pre/post-buckled regions is solved by the differential quadrature method (DQM), and the nonlinear dynamic stability is solved by incremental harmonic balance method (IHBM). In numerical results, the effects of small scale parameter, types of lipid tubule on vibration in pre/post-buckled states and nonlinear dynamic stability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fang J (2007) Ordered arrays of self-assembled lipid tubules: fabrication and Applications. J Mater Chem 17:3479–3484

    Article  ADS  Google Scholar 

  2. Meilander NJ, Pasumarthy MK, Kowalczyk TH, Cooper MJ, Bellamkonda RV (2003) Sustained release of plasmid DNA using lipid microtubules and agarose hydrogel. J Control Release 88:321–331

    Article  Google Scholar 

  3. Meilander NJ, Yu X, Ziats NP, Bellamkonda RV (2001) Lipid-based microtubular drug delivery vehicles. J Control Release 71:141–152

    Article  Google Scholar 

  4. Kameta N, Masuda M, Minamikawa H, Goutev NV, Rim JA, Jung JH, Shimizu T (2005) Selective construction of supramolecular nanotube hosts with cationic inner surfaces. Adv Mater 17:2732–2736

    Article  Google Scholar 

  5. Kameta N, Masuda M, Mizuno G, Morii N, Shimizu T (2008) Supramolecular nanotube endo sensing for a guest protein. Small 4:561–565

    Article  Google Scholar 

  6. Yamada K, Ihara H, Ide T, Fukumoto T, Hirayama C (1984) Formation of helical super structure from single-walled bilayers by amphiphiles with aligo-l-glutamic acid-head group. Chem Lett 13:1713–1716

    Article  Google Scholar 

  7. Yager P, Schoen PE (1984) Formation of tubules by a polymerizable surfactant. Mol Cryst Liq Cryst 106:371–381

    Article  Google Scholar 

  8. Fujima T, Frusawa H, Minamikawa H, Ito K, Shimizu T (2006) Elastic precursor of the transformation from glycolipid nanotube to vesicle. J Phys: Condens Matter 18:3089

    ADS  Google Scholar 

  9. Rosso R, Virga EG (1998) Exact statics and approximate dynamics of adhering lipid tubules. Contin Mech Thermodyn 10:107–119

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Rosso R, Virga EG (1998) Adhesion by curvature of lipid tubules. Contin Mech Thermodyn 10:359–367

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Stepanyants N, Jeffries GD, Orwar O, Jesorka A (2012) Radial sizing of lipid nanotubes using membrane displacement analysis. Nano Lett 12:1372–1378

    Article  ADS  Google Scholar 

  12. Zhao Y, Mahajan N, Fang J (2006) Bending and radial deformation of lipid tubules on Self-Assembled Thiol Monolayers. J Phys Chem B 110:22060–22063

    Article  Google Scholar 

  13. Zhao Y, Tamhane K, Zhang X, An L, Fang J (2008) Radial elasticity of self-assembled lipid tubules. ACS Nano 2:1466–1472

    Article  Google Scholar 

  14. Zhao Y, An L, Fang J (2007) Buckling of lipid tubules in shrinking liquid droplets. Nano Lett 7:1360–1363

    Article  ADS  Google Scholar 

  15. Zhao Y, An L, Fang J (2009) Buckling instability of lipid tubules with multibilayer walls under local radial indentation. Phys Rev E 80:021911

    Article  ADS  Google Scholar 

  16. Zhao Y, Fang J (2008) Zigzag lipid tubules. J Phys Chem B 112:10964–10968

    Article  Google Scholar 

  17. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface Waves. J Appl Phys 54:4703–4710

    Article  ADS  Google Scholar 

  18. Yang F, Chong A, Lam D, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  19. Lam D, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  ADS  MATH  Google Scholar 

  20. Shen H-S (2011) Nonlinear analysis of lipid tubules by nonlocal beam model. J Theor Biol 276:50–56

    Article  MathSciNet  Google Scholar 

  21. Gao Y, Lei F-M (2009) Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory. Biochem Biophys Res Commun 387:467–471

    Article  Google Scholar 

  22. Civalek Ö, Demir Ç (2011) Bending analysis of microtubules using nonlocal euler–bernoulli beam theory. Appl Math Model 35:2053–2067

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen H-S (2013) A two-step perturbation method in nonlinear analysis of beams, plates and shells. Wiley, Singapore

    Book  MATH  Google Scholar 

  24. Fu Y, Bi R, Zhang P (2009) Nonlinear dynamic instability of double-walled carbon nanotubes under periodic excitation. Acta Mech Solida Sin 22:206–212

    Article  Google Scholar 

  25. Fu Y, Wang J, Mao Y (2012) Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Appl Math Model 36:4324–4340

    Article  MathSciNet  MATH  Google Scholar 

  26. Lau S, Cheung Y, Wu S (1982) A variable parameter incrementation method for dynamic instability of linear and nonlinear elastic systems. J Appl Mech 49:849–853

    Article  MATH  Google Scholar 

  27. Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. Appl Mech Rev 49:1–28

    Article  ADS  Google Scholar 

  28. Shen H-S (2011) A novel technique for nonlinear analysis of beams on two-parameter elastic foundations. Int J Struct Stab Dyn 11:999–1014

    Article  MathSciNet  MATH  Google Scholar 

  29. Nayfeh AH, Emam SA (2008) Exact solution and stability of postbuckling configurations of beams. Nonlinear Dyn 54:395–408

    Article  MathSciNet  MATH  Google Scholar 

  30. Girish J, Ramachandra L (2005) Thermal postbuckled vibrations of symmetrically laminated composite plates with initial geometric imperfections. J Sound Vib 282:1137–1153

    Article  ADS  Google Scholar 

  31. Bolotin VV (1964) The dynamic stability of elastic systems. Holden-Day, San Francisco

    MATH  Google Scholar 

  32. Wang CM, Zhang YY, He XQ (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10):105401

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China under Grant No. 11272117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Fu, Y. & Tao, C. Linear free vibration in pre/post-buckled states and nonlinear dynamic stability of lipid tubules based on nonlocal beam model. Meccanica 51, 1481–1489 (2016). https://doi.org/10.1007/s11012-015-0320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0320-z

Keywords

Navigation