Skip to main content
Log in

A Timoshenko dielectric beam model with flexoelectric effect

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, a Timoshenko dielectric beam model with the consideration of the direct flexoelectric effect is developed by using the variational principle. The governing equations and the corresponding boundary conditions are naturally derived from the variational principle. The effect of flexoelectricity on the Timoshenko dielectric beams is analytically investigated. The developed beam model recovers to the classical Timoshenko beam model when the flexoelectricity is not taken into account. To illustrate this model, the deflection and rotation of Timoshenko dielectric nanobeam under two different boundary conditions are calculated. The numerical results reveal that both the deflection and rotation predicted by the current model are smaller than those predicted by the classical Timoshenko beam model. Moreover, the discrepancies of the deflection and rotation between the values predicted by the two models are very large when the beam thickness is small. The current model can also reduce to the Bernoulli–Euler dielectric beam model wherein the shear deflection is not considered. This work may be helpful in understanding the electromechanical response at nanoscale and designing dielectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Craighead HG (2000) Nanoelectromechanical systems. Science 290(5496):1532–1535

    Article  ADS  Google Scholar 

  2. Ekinci K, Roukes M (2005) Nanoelectromechanical systems. Rev Sci Instrum 76(6):061101

    Article  ADS  Google Scholar 

  3. Majdoub MS, Sharma P, Cagin T (2008) Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys Rev B 77(12):125424

    Article  ADS  Google Scholar 

  4. Sharma N, Landis C, Sharma P (2010) Piezoelectric thin-film superlattices without using piezoelectric materials. J Appl Phys 108(2):024304

    Article  ADS  Google Scholar 

  5. Fleck N, Muller G, Ashby M, Hutchinson J (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487

    Article  Google Scholar 

  6. Kong S, Zhou S, Nie Z, Wang K (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47(4):487–498

    Article  MathSciNet  MATH  Google Scholar 

  7. Shen SP, Hu SL (2010) A theory of flexoelectricity with surface effect for elastic dielectrics. J Mech Phys Solids 58(5):665–677

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ma W, Cross LE (2001) Large flexoelectric polarization in ceramic lead magnesium niobate. Appl Phys Lett 79(26):4420–4422

    Article  ADS  Google Scholar 

  9. Ma W, Cross LE (2001) Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3) O3 ceramics. Appl Phys Lett 78(19):2920–2921

    Article  ADS  Google Scholar 

  10. Maranganti R, Sharma N, Sharma P (2006) Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys Rev B 74(1):014110

    Article  ADS  Google Scholar 

  11. Liang X, Shen SP (2013) Size-dependent piezoelectricity and elasticity due to the electromechanical field-strain gradient coupling and strain gradient elasticity. Int J Appl Mech 5(2):1350014

    Article  Google Scholar 

  12. Mindlin R, Tiersten H (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448

    Article  MathSciNet  MATH  Google Scholar 

  13. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438

    Article  Google Scholar 

  14. Asghari M, Kahrobaiyan M, Ahmadian M (2010) A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int J Eng Sci 48(12):1749–1761

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang F, Chong ACM, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  16. Ma H, Gao X-L, Reddy J (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56(12):3379–3391

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hu SL, Shen SP (2009) Electric field gradient theory with surface effect for nano-dielectrics. CMC Comput Mater Contin 13(1):63–87

    MathSciNet  Google Scholar 

  18. Hadjesfandiari AR (2013) Size-dependent piezoelectricity. Int J Solids Struct 50(18):2781–2791

    Article  Google Scholar 

  19. Hadjesfandiari AR (2014) Size-dependent theories of piezoelectricity: comparisons and further developments for centrosymmetric dielectrics. arXiv preprint arXiv:14091082

  20. Darrall BT, Hadjesfandiari AR, Dargush GF (2015) Size-dependent piezoelectricity: a 2D finite element formulation for electric field-mean curvature coupling in dielectrics. Eur J Mech A Solids 49:308–320

    Article  MathSciNet  Google Scholar 

  21. Li A, Zhou S, Zhou S, Wang B (2014) Size-dependent analysis of a three-layer microbeam including electromechanical coupling. Compos Struct 116:120–127

    Article  Google Scholar 

  22. Majdoub MS, Sharma P, Cagin T (2008) Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures. Phys Rev B 78(12):121407

    Article  ADS  Google Scholar 

  23. Shen S, Kuang ZB (1999) An active control model of laminated piezothermoelastic plate. Int J Solids Struct 36(13):1925–1947

    Article  MATH  Google Scholar 

  24. Le Quang H, He QC (2011) The number and types of all possible rotational symmetries for flexoelectric tensors. Proc R Soc Lond A Math Phys Eng Sci 467(2132):2369–2386

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Shu L, Wei X, Pang T, Yao X, Wang C (2011) Symmetry of flexoelectric coefficients in crystalline medium. J Appl Phys 110(10):104106

    Article  ADS  Google Scholar 

  26. Liu CC, Hu SL, Shen SP (2012) Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire. Smart Mater Struct 21(11):115024

    Article  ADS  Google Scholar 

  27. Asghari M, Rahaeifard M, Kahrobaiyan M, Ahmadian M (2011) The modified couple stress functionally graded Timoshenko beam formulation. Mater Des 32(3):1435–1443

    Article  MATH  Google Scholar 

  28. Ma WH, Cross LE (2006) Flexoelectricity of barium titanate. Appl Phys Lett 88(23):232902

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The supports from NSFC (Grants Nos. 11025209, 11372238, 11302161, 11321062, 11302162) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Liang or Shengping Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Liang, X. & Shen, S. A Timoshenko dielectric beam model with flexoelectric effect. Meccanica 51, 1181–1188 (2016). https://doi.org/10.1007/s11012-015-0290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0290-1

Keywords

Navigation