Skip to main content
Log in

A reaction–diffusion model for competing languages

  • New Trends in Fluid and Solid Mechanical Models
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The extinction of many of the world’s minority languages is of great concern as language death can lead to the irrevocable loss of cultural information. This often occurs through a process of language shift, where individuals switch from speaking one language to a different, more dominant, language. To prevent the loss of language, it is necessary to determine whether language loss is inevitable or if languages can coexist. We address this question by constructing a nonlinear system of reaction–diffusion equations to model the spread of two competing languages, u and v, which vary temporally and spatially. Language u is assumed to confer a relative status advantage to its speakers, thus individuals may convert from language v to language u. The four constant system equilibria are found. Instability and stability conditions are found for each equilibrium. We conclude that the coexistence of both languages u and v is globally stable, subject to certain constraints on the growth rate of each language and the initial values of both u and v.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abrams DM, Strogatz SH (2003) Modelling the dynamics of language death. Nature 424:900

    Article  ADS  Google Scholar 

  2. Abrams DM, Yaple HA, Wiener RJ (2011) Dynamics of social group competition: modeling the decline of religious affiliation. Phys Rev Lett 107:088701

    Article  ADS  Google Scholar 

  3. Aoki K, Shida M, Shigesada N (1996) Travelling wave solutions for the spread of farmers into a region occupied by hunter-gatherers. Theor Popul Biol 50:1–17

    Article  MATH  Google Scholar 

  4. Bakalis E, Galani A (2012) Modeling language evolution: aromanian, an endangered language in Greece. Physica A 391(20):4963–4969

    Article  ADS  Google Scholar 

  5. Berti A, Bochicchio I, Fabrizio M (2014) Phase separation in quasi-incompressible fluids: Cahn-Hilliard model in the Cattaneo-Maxwell framework. Zeitschrift für angewandte Mathematik und Physik, pp 1–13

  6. Brenzinger M (1992) Language death: factual and theoretical explorations with special reference to east Africa. Walter de Gruyter, Berlin

    Book  Google Scholar 

  7. Catalan, Language of Europe. http://www20.gencat.cat/docs/Llengcat/Documents/Publicacions/Catala%20llengua%20Europa/Arxius/cat_europa_angles_07.pdf. Generalitat de Catalunya, Departament de la Vicepresidència, Secretaria de Política Lingüística

  8. Capone F, De Luca R (2012) Ultimately boundedness and stability of triply diffusive mixtures in rotating porous layers under the action of Brinkman law. Int J Non Linear Mech 47(7):799–805

    Article  Google Scholar 

  9. Capone F, De Luca R (2014) Coincidence between linear and global nonlinear stability of non-constant throughflows via the Rionero “Auxiliary System Method”. Meccanica. doi:10.1007/s11012-014-9920-2

    Google Scholar 

  10. Daghia F, Fabrizio M, Grandi D (2010) A non isothermal Ginzburg-Landau model for phase transitions in shape memory alloys. Meccanica 45:797–807

    Article  MATH  MathSciNet  Google Scholar 

  11. Fabrizio M, Mongiovì MS (2013) Phase transition and \(\lambda \)-line in liquid helium. J Non-Equilib Thermodyn 38:185–200

    Article  MATH  Google Scholar 

  12. Fabrizio M, Mongiovì MS (2013) Phase transition in liquid 4He by a mean field model. J Therm Stress 36:135–151

    Article  Google Scholar 

  13. Fabrizio M, Rivera JM Diffusive theory of migration and integration. In: Bissell JJ, Caiado CCS, Goldstein M, Straughan B (eds) Tipping points: modelling social problems and health. Wiley (in press)

  14. Fishman JA (2001) Why is it so hard to save a threatened language? In: Fishman JA (ed) Can threatened languages be saved?. Multilingual Matters Ltd, Clevedon

    Google Scholar 

  15. Gilbarg D, Trudinger NS (1998) Elliptic partial differential equations of second order, 2nd edn. Springer, Berlin

    Google Scholar 

  16. Golla V (2011) California Indian languages. University of California Press, California

    Google Scholar 

  17. Grenoble LA, Whaley LJ (2005) Saving languages: an introduction to language revitalization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Harfash AJ, Straughan B (2012) Magnetic effect on instability and nonlinear stability in a reacting fluid. Meccanica. doi:10.1007/s11012-012-9558-x

  19. Hickey R (ed) (2013) The handbook of language contact. Wiley, Chichester

    Google Scholar 

  20. Hill AA, Malashetty MS (2012) An operative method to obtain sharp nonlinear stability for systems with spatially dependent coefficients. Proc R Soc A Math Phys Eng Sci 468(2138):323–336

    Article  ADS  MathSciNet  Google Scholar 

  21. Idescat Linguistic Census. http://www.idescat.cat/en/poblacio/poblcensling.html, accessed Sept. 2013

  22. Joseph DD (1965) On the stability of the Boussinesq equations. Arch Ration Mech Anal 20(1):59–71

    Article  MATH  Google Scholar 

  23. Joseph DD (1966) Nonlinear stability of the Boussinesq equations by the method of energy. Arch Ration Mech Anal 22(3):163–184

    Article  MATH  Google Scholar 

  24. Joseph DD (1970) Global stability of the conduction–diffusion solution. Arch Ration Mech Anal 36(4):285–292

    Article  MATH  Google Scholar 

  25. Kandler A, Steele J (2008) Ecological models of language competition. Biol Theory 3:164–173

    Article  Google Scholar 

  26. Kandler A, Unger R, Steele J (2010) Language shift, bilingualism and the future of Britain’s Celtic languages. Philos Trans R Soc B Biol Sci 365(1559):3855–3864

    Article  Google Scholar 

  27. Minett JW, Wang WS-Y (2008) Modelling endangered languages: the effects of bilingualism and social structure. Lingua 118(1):19–45

    Article  Google Scholar 

  28. Mira J, Paredes Á (2005) Interlinguistic similarity and language death dynamics. Europhys Lett 69(6):1031–1034

    Article  ADS  Google Scholar 

  29. Mira J, Seoane LF, Nieto JJ (2011) The importance of interlinguistic similarity and stable bilingualism when two languages compete. N J Phys 13(3):033007

    Article  Google Scholar 

  30. Mulone G, Straughan B, Wang W (2007) Stability of epidemic models with evolution. Stud Appl Math 118(2):117–132

    Article  MathSciNet  Google Scholar 

  31. Nettle D, Romaine S (2000) Vanishing voices: the extinction of the world’s languages. Oxford University Press, Oxford

    Google Scholar 

  32. Orr WM (1907) The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I a perfect liquid. Proc R Ir Acad Sect A Math Phys Sci 27:9–68

    Google Scholar 

  33. Patriarca M, Leppänen T (2004) Modeling language competition. Physica A 338:296–299

    Article  ADS  Google Scholar 

  34. Pinasco JP, Romanelli L (2006) Coexistence of languages is possible. Physica A 361:355–360

    Article  ADS  Google Scholar 

  35. Rionero S (1967) Sulla stabilità asintotica in media in magnetoidrodinamica non isoterma. Ricerche di Matematica 16:250–263

    MathSciNet  Google Scholar 

  36. Rionero S (1968) Metodi variazionali per la stabilità asintotica in media in magnetoidrodinamica. Annali di Matematica Pura ed Applicata 78:339–364

    Article  MATH  MathSciNet  Google Scholar 

  37. Rionero S (2009) L2-energy stability via new dependent variables for circumventing strongly nonlinear reaction terms. Nonlinear Anal Theory Methods Appl 70(7):2530–2541

    Article  MATH  MathSciNet  Google Scholar 

  38. Rionero S (2012) Absence of subcritical instabilities and global nonlinear stability for porous ternary diffusive-convective fluid mixtures. Phys Fluids 24(10):104101

    Article  ADS  MathSciNet  Google Scholar 

  39. Rionero S (2014) “Cold convection” in porous layers salted from above. Meccanica. doi:10.1007/s11012-013-9870-0

  40. Romaine S (2000) Language in society: an introduction to sociolinguistics. Oxford University Press, Oxford

    Google Scholar 

  41. Serrin J (1959) On the stability of viscous fluid motions. Arch Ration Mech Anal 3(1):1–13

    Article  MATH  MathSciNet  Google Scholar 

  42. Steele J, Kandler A (2010) Language trees \(\ne \) gene trees. Theory Biosci 129:223–233

    Article  Google Scholar 

  43. Straughan B (2004) The energy method, stability and nonlinear convection. Springer, New York

    Book  MATH  Google Scholar 

  44. Straughan B (2013) Nonlinear stability for a simple model of a protoplanetary disc. Nonlinear Anal Real World Appl 17:23–32

    Article  MathSciNet  Google Scholar 

  45. Tsunoda T (2006) Language endangerment and language revitalization: an introduction. Walter de Gruyter, Berlin

    Book  Google Scholar 

  46. Vogt P (2009) Modeling Interactions between language evolution and demography. Hum Biol 81:237–258

    Article  Google Scholar 

  47. Wang W, Zhao X (2012) Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J Appl Dyn Syst 11(4):1652–1673

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank Jeremy R. Kendal and Brian Straughan for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline E. Walters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walters, C.E. A reaction–diffusion model for competing languages. Meccanica 49, 2189–2206 (2014). https://doi.org/10.1007/s11012-014-9973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-9973-2

Keywords

Navigation