Skip to main content
Log in

Steady state thermal and mechanical stresses of a poro-piezo-FGM hollow sphere

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this study, an analytical method is developed to obtain mechanical and thermal stress and electrical potential functions, electrical and mechanical displacement in two dimensional steady (r,θ) stat a functionally graded piezo electric porous material hollow sphere (FGPPM). It is assumed that properties of poro, piezoelectric and FGM material is changed through thickness according to power law functions, Heat conduction equation is obtained for obtaining temperature distribution and Navier equations analytically using Legendre polynomials and Euler differential equations system for investigating displacements changes and stress and potential functions for different power indices law and is drawn on a graph. These results are confirmed with the obtained in formations in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Nie GJ, Zhong Z, Batra RC (2011) Material tailoring for functionally graded hollow cylinders and spheres. Compos Sci Tech 71:666–673

    Article  Google Scholar 

  2. Qin Q-H (2001) Fracture mechanics of piezoelectric materials. WIT, Southampton

    Google Scholar 

  3. Poultangari R, Jabbari M, Eslami MR (2008) Functionally graded hollow spheres under non-axisymmetric thermo-mechanical loads. Int J Press Vessels Piping 79:295–305

    Article  Google Scholar 

  4. Ootao Y, Tanigawa Y (1994) Three-dimensional transient thermal stress analysis of a nonhomogeneous hollow sphere with respect to rotating heat source. Trans Jpn Soc Mech Eng A 460:2273–2279 (in Japanese)

    Article  Google Scholar 

  5. Jabbari M, Sohrabpour S, Eslami MR (2002) Mechanical and thermal stresses in functionally graded hollow cylinder due to radially symmetric loads. Int J Press Vessels Piping 79:493–497

    Article  Google Scholar 

  6. Jabbari M, Sohrabpour S, Eslami MR (2003) General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads. ASME J Appl Mech 70:111–118

    Article  MATH  Google Scholar 

  7. Shao ZS, Wang TJ (2006) Three-dimensional solutions for the stress fields in functionally graded cylindrical panel with finite length and subjected to thermal/mechanical loads. Int J Solids Struct 43:3856–3874

    Article  MATH  Google Scholar 

  8. Ding HJ, Chen WQ (2001) Three dimensional problems of piezoelasticity. Nova Science Publishers, New York

    Google Scholar 

  9. Wu CCM, Kahn M, Moy W (1996) Piezoelectric ceramics with functionally gradients: a new application in material design. J Am Ceram Soc 79:809–812

    Article  Google Scholar 

  10. Shelley WF, Wan S, Bowman KJ (1999) Functionally graded piezoelectric ceramics. Mater Sci Forum 308(311):515–520

    Article  Google Scholar 

  11. Zhu XH, Zu J, Meng ZY, Zhu JM, Zhou SH, Li Q et al. (2000) Micro displacement characteristics and microstructures of functionally graded piezoelectric ceramic actuator. Mater Des 21:561–566

    Article  Google Scholar 

  12. Ootao Y, Tanigawa Y (2007) Transient piezothermoelastic analysis fora functionally graded thermopiezoelectric hollow sphere. Compos Struct 81:540–549

    Article  Google Scholar 

  13. Ben Salah I, Njeh A, Ben Ghozlen MH (2012) A theoretical study of the propagation of Rayleigh waves in a functionally graded piezoelectric material (FGPM). Mater Sci Eng 28:012047

    Google Scholar 

  14. Dai H-L, Jiang H-J, Yang L (2012) Time-dependent behaviors of a FGPM hollow sphere under the coupling of multi-fields. Solid State Sci 14:587–597

    Article  Google Scholar 

  15. Ghorbanpour Arani A, Kolahchi R, Mosallaie Barzoki AA, Loghman A (2012) The effect of time-dependent creep on electro-thermo-mechanical behaviors of piezoelectric sphere using Mendelson’s method. Eur J Mech A, Solids 37:318–328

    Article  Google Scholar 

  16. Chen WQ, Ding HJ, Xu RQ (2001) Three-dimensional free vibration analysis of a fluid-filled piezoceramic hollow sphere. Comput Struct 79:653–663

    Article  Google Scholar 

  17. Chen WQ, Ding HJ, Xu RQ (2001) Three dimensional static analysis of multi-layered piezo electric hollow sphere via the state space method. Int J Solids Struct 38:4921–4936

    Article  MATH  Google Scholar 

  18. Wang HM, Xu ZX (2010) Effect of material inhomogeneity on electromechanical behavior of functionally graded piezoelectric spherical structures. Comput Mater Sci 48:440–445

    Article  ADS  Google Scholar 

  19. Dai H-L, Hong L, Fu Y-M, Xiao X (2010) Analytical solution for electro magneto thermoelastic behaviors of a functionally graded piezoelectric hollow cylinder. Appl Math Model 34:343–357

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang HM, Ding HJ (2006) Transient responses of a magneto-electro-elastic hollow sphere for fully coupled spherically symmetric problem. Eur J Mech A, Solids 25:965

    Article  MATH  Google Scholar 

  21. Meyer U, Larsson A, Hentze HP, Caruso RA (2002) Adv Mater 14:1768

    Article  Google Scholar 

  22. Stein A (2001) Microporous Mesoporous Mater 44:227

    Article  Google Scholar 

  23. Yang X (2005) Gurtin-type variational principles for dynamics of a non-local thermal equilibrium saturated porous medium. Acta Mech Solida Sin 18(1):37–45

    Google Scholar 

  24. EI-Zein A (2006) Laplace boundary element model for the thermoelastic consolidation of multilayered media. Int J Geomech 6(2):136–140

    Article  Google Scholar 

  25. Bowen CR, Perry A, Lewis ACF, Kara H (2004) Processing and properties of porous piezoelectric materials with high hydrostatic figures of merit. J Eur Ceram Soc 24:541–545

    Article  Google Scholar 

  26. Jabbari M, Karampour S, Eslami MR (2011) Radially symmetric steady thermal and mechanical stresses of a poro FGM hollow sphere. ISRN Mech Eng, 2011

  27. Almajid A, Taya M, Takagi K, Li J-F, Watanabe R (2002) Fabrication and modeling of porous FGM piezoelectric actuators. SPIE Digital Library 4701:467–476

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Eslami.

Appendices

Appendix A

Appendix B

Consider the Legendre differential equation [18] as

$$\bigl(1 - x^{2}\bigr)y'' (x) - 2xy' (x) + n(n + 1)y(x) = 0, $$

where x and y are independent and dependent variables, respectively. Solution of foregoing differential equation is

$$y(x) = P_{n} (x), $$

where P n (x) is the Legendre polynomial and may be written as

$$P_{n} (x) = \frac{1}{2^{n}n!} \frac{d''}{dx^{n}} \bigl(x^{2} - 1\bigr)^{n} $$

Utilizing Eqs. (46)–(48), following relations may be derived:

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabbari, M., Karampour, S. & Eslami, M.R. Steady state thermal and mechanical stresses of a poro-piezo-FGM hollow sphere. Meccanica 48, 699–719 (2013). https://doi.org/10.1007/s11012-012-9625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9625-3

Keywords

Navigation