Skip to main content
Log in

Springback compensation in deep drawing applications

A new methodology for automatic die compensation through a suitable optimization

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This work deals with the problem of springback compensation in sheet metal forming. Satisfactory results can be achieved by performing “die compensation”: the die is modified pretending to obtain a different configuration at the end of the punch stroke, but in order that the final piece coincides with the desired one after the deformation due to springback. Empirical die compensation has nowadays been replaced by numerical simulation, but the inverse problem that needs to be solved is non-trivial since the transformation from the modified geometry of the die and the final piece obtained from it implies a very complex FEM simulation. In this work we set the whole process of springback compensation on solid physical and mathematical grounds. An optimization algorithm based on the Gauss-Newton method is proposed to deliver automatic die compensation and its performance is investigated on some test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu SJ, Duncan JL, Marciniak Z (2005) Mechanics of sheet metal forming, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  2. Yuqi L, Ping H, Jincheng W (2002) Springback simulation and analysis of strong anisotropic sheet metals in U-channel bending process. Acta Mech Sin (Engl Ser) 18(3)

  3. Campana F, Cortese L (2005) Sviluppo di un modello costitutivo per l’analisi FEM del ritorno elastico di componenti in lamiera sottile alto resistenziale. In: Associazione italiana per l’analisi delle sollecitazioni—XXXIV convegno nazionale

  4. Hill R (1998) The mathematical theory of plasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  5. Mendelson A (1968) Plasticity: theory and application. Macmillan, London

    Google Scholar 

  6. Buranathiti T, Cao J (2004) An effective analytical model for springback prediction in straight flanging processes. Int J Mater Prod Technol 21(1–3):137–153

    Article  Google Scholar 

  7. Maker BN, Zhu X (2000) Input parameters for metal forming simulation using LS-DYNA. Livermore Software Technology Corporation

  8. Maker BN, Zhu X (2001) Input parameters for springback simulation using LS-DYNA. Livermore Software Technology Corporation

  9. Maker BN, Zhu X (2003) A procedure for springback analysis using LS-DYNA. Livermore Software Technology Corporation

  10. LS-DYNA theoretical manual (1998) Livermore Software Technology Corporation

  11. Cai ZY, Li MZ, Chen XD (2006) Digitized die forming system for sheet metal and springback minimizing technique. Int J Adv Manuf Technol 28(11–12):1089–1096

    Article  MathSciNet  Google Scholar 

  12. Dan J, Lancheng W (2006) Direct generation of die surfaces from measured data points based on springback compensation. Int J Adv Manuf Technol 31(5–6):574–579

    Article  Google Scholar 

  13. Lepadatu D, Habli R, Kobi A, Barreau A (2005) Optimisation of springback in bending processes using FEM simulation and response surface method. Int J Adv Manuf Technol 27(1–2):40–47

    Article  Google Scholar 

  14. Cimolin F (2005) Metodologie di ottimizzazione della compensazione del ritorno elastico in un componente imbutito. Thesis, Dipartimento di Matematica, Politecnico di Torino

  15. Canuto C, Cimolin F, Vadori V (2006) Compensazione del ritorno elastico in un componente imbutito. In: Associazione italiana per l’analisi delle sollecitazioni—XXXV convegno nazionale

  16. Dutton T, Edwards R, Blowey A (2005) Tool design for a high strength steel side impact beam with springback compensation. In: 5th European LS-DYNA users conference

  17. Meirovitch L (1986) Elements of vibration analysis, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  18. OptiStruct 7.0 reference guide (2004) Altair Engineering, Inc

  19. Altair HyperMesh TCL/TK macro training (2001) Altair Engineering, Inc

  20. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, Berlin

    MATH  Google Scholar 

  21. Kelley CT (1999) Iterative methods for optimization. SIAM, Philadelphia

    MATH  Google Scholar 

  22. Dennis JE, Schnabel RB (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, New York

    MATH  Google Scholar 

  23. TCL Standard Library. http://tcllib.sourceforge.net/

  24. Powell MJD (1998) Direct search algorithms for optimization calculations. Acta Numer 7:287–336

    Article  MathSciNet  Google Scholar 

  25. Kolda TG (2005) Revisiting asynchronous parallel pattern search for nonlinear optimization. SIAM J Optim 16(2):563–586

    Article  MATH  MathSciNet  Google Scholar 

  26. Proud’Homme C, Rovas DV, Veroy K, Patera AT (2002) A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. Math Model Numer Anal 36(5):747–771

    Article  MathSciNet  Google Scholar 

  27. Rozza G (2005) On optimization, control and shape design for an arterial bypass. Int J Numer Methods Fluids 47(10–11):1411–1419

    Article  MATH  MathSciNet  Google Scholar 

  28. Gan W, Wagoner RH (2004) Die design method for sheet springback. Int J Mech Sci 46:1097–1113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Cimolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimolin, F., Vadori, R. & Canuto, C. Springback compensation in deep drawing applications. Meccanica 43, 101–113 (2008). https://doi.org/10.1007/s11012-008-9117-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-008-9117-7

Keywords

Navigation