Skip to main content
Log in

Elliptic integral solutions of spatial elastica of a thin straight rod bent under concentrated terminal forces

Meccanica Aims and scope Submit manuscript

Abstract

In this article, we solve in closed form a system of nonlinear differential equations modelling the elastica in space of a thin, flexible, straight rod, loaded by a constant thrust at its free end. Common linearizations of strength of materials are of course not applicable any way, because we analyze great deformations, even if not so large to go off the linear elasticity range. By passing to cylindrical coordinates ρ, θ, z, we earn a more tractable differential system evaluating ρ as elliptic function of polar anomaly θ and also providing z through elliptic integrals of I and III kind. Deformed rod’s centerline is then completely described under both tensile or compressive load. Finally, the planar case comes out as a degeneracy, where the Bernoulli lemniscatic integral appears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fraser CG (1991) Euler’s investigation of the elastica. Centaurus 34:211–246

    MATH  MathSciNet  ADS  Google Scholar 

  2. Basoco MA (1941) On the inflexional elastica. Am Math Monthly 48:303–309

    Article  MathSciNet  Google Scholar 

  3. Benvenuto E (1981) La scienza delle costruzioni e il suo sviluppo storico. Sansoni, Firenze

    Google Scholar 

  4. Tricomi FG (1951) Funzioni ellittiche Zanichelli, Bologna

  5. Schell W (1880) Theorie der Bewegung und der Kräfte, II, B. G. Teubner Druck u. Verlag, Leipzig (1981)

  6. Burgatti P (1931) Teoria matematica dell’elasticità. Zanichelli, Bologna

    Google Scholar 

  7. Panayotounakos DE, Theocaris PS (1986) Exact solution for an approximate differential equation of a straight bar under conditions of non-linear equilibrium. Int J Non-linear Mech 21:421–429

    Article  MATH  MathSciNet  Google Scholar 

  8. Chucheepsakul S, Phungpaigram B (2004) Elliptic integral solutions of variable -arc-length elastica under an inclined follower force. Z Angew Math Mech 84:29–38

    Article  MATH  MathSciNet  Google Scholar 

  9. Panayotounakos DE, Theocaris PS (1982) Exact solution of the non-linear differential equation concerning the elastic line of as traight rod due to terminal loading. Int J Non-linear Mech 17:395–402

    Article  MATH  MathSciNet  Google Scholar 

  10. Goto Y, Yoshimitsu T, Obata M (1990) Elliptic integral solutions of plane elastica with axial and shear deformations. Int J Non-Linear Mech 26:375–390

    MATH  MathSciNet  Google Scholar 

  11. Sotiropoulu AB, Panayotounakos DE (2004) Exact parametric analytic solution of the elastica ODEs for bars including effects of the transverse deformation. Int J Non-Linear Mech 39:1555–1570

    Article  Google Scholar 

  12. panayotounakos DE, Theocaris PS (1988) Analytic solutions for nonlinear differential equations describing the elastica of straight bars: theory. J Franklin Instit 325:621–633

    Article  MATH  MathSciNet  Google Scholar 

  13. Lardner TJ (1985) A note on the elastica with large loads. Int J Solids Struct 21:21–26

    Article  MathSciNet  Google Scholar 

  14. Dickey RW, Rosemann JJ (1993) Equilibria of the circular elastica under a uniform central force field. Q Appl Math 51:201–216

    MATH  Google Scholar 

  15. Perline R (1998) The role of elastica in geometry. In: Wojcik D et al. (eds) Proceedings of the first non-orthodox school on nonlinearity and geometry, Luigi Bianchi days, Warsaw, September 21–28, 1995 Polish Scientific Publishers PWN,Warsaw, pp 359–364

  16. Golley BW (1984) Large deflections of bars bent through frictionless supports. Int J Non-Linear Mech 19:1–9

    Article  MATH  MathSciNet  Google Scholar 

  17. Sun M-G (1992) Behaviour of a post-buckling riser vibrating due to effects of waves and current. Int J Non-Linear Mech 27:437–445

    Article  MATH  Google Scholar 

  18. Matsutani S (1998) Statistical mechanics of elastica on a plane: origin of the MKdV hierarchy. J Phys A 31(11):2705–2725

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Stump DN, Fraser WB (2000) Multiple solutions for writhed rods: implications for DNA supercooling. Proc R Soc Lond A 456:455–467

    MATH  MathSciNet  ADS  Google Scholar 

  20. Kida S (1981) A vortex filament moving without change of form. J Fluid Mech 112:397–409

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Love AEH (1944) A treatise on the mathematical theory of elasticity, 4th edn (1927, reprint). Dover, New York, pp 1–32

    Google Scholar 

  22. Dill EH (1992) Kirchhoff’s theory of rods. Arch Hist Exact Sci 44:1–23

    Article  MATH  MathSciNet  Google Scholar 

  23. da Fonseca AF, de Aguiar MAM (2003) Solving the boundary value problem for finite Kirchhoff rods. Physica D 181:53–69

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Tobias I, Coleman BD, Olson WK (1994) The dependence of DNA tertiary structure on end conditions: theory and applications for topological transitions. J Chem Phys 101,(12) 10990

    Google Scholar 

  25. Irwin T, Swigon D, Coleman BD (2000) Elastic stability of DNA configurations. I. General theory. Phys Rev E 61(1):747–758

    Article  MathSciNet  ADS  Google Scholar 

  26. Coleman BD, Swigon D, Irwin T (2000) Elastic stability of DNA configurations. II. Supercoiled plasmids with self contact. Phys Rev E 61(1):759–770

    Article  MathSciNet  ADS  Google Scholar 

  27. Lakes R (1995) Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus H (ed) Continuum models for materials with micro-structure. Wiley, New York, pp 1–22

    Google Scholar 

  28. Antman S (1995) Nonlinear problems of elasticity. Springer-Verlag, New York

    MATH  Google Scholar 

  29. van der Heijden GHM (2001) The static deformation of a twisted elastic rod constrained to lie on a cylinder. Proc R Soc Lond A 457:695–715

    Article  MATH  ADS  Google Scholar 

  30. Langer J, Singer DA (1984) The total squared curvature of closed curves. J Diff Geometry 20:1–22

    MATH  MathSciNet  Google Scholar 

  31. Langer J, Singer DA (1984) Knotted elastic curves in \(\mathbb{R}^3\). J. Lond Math Soc 2, (30):512–520

    MathSciNet  Google Scholar 

  32. Langer J, Singer DA (1996) Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev 38(4):605–618

    Article  MATH  MathSciNet  Google Scholar 

  33. Hasimoto H (1971) Motion of a vortex filament and its relation to elastica. J Phys Soc Jpn 31:293–294

    Article  ADS  Google Scholar 

  34. Landau L, Lifchitz E (1967) Théorie de l’élasticité. MIR, Moscow

    MATH  Google Scholar 

  35. Appell P, Lacour E (1922) Fonctions elliptiques. Gauthier-Villars, Paris

    MATH  Google Scholar 

  36. Cercignani C (1991) Spazio, tempo, movimento. Zanichelli, Bologna

    MATH  Google Scholar 

  37. Byrd PF, Friedman MD (1971) Handbook of elliptic integrals for engineers and scientists, 2nd edn. Springer Verlag, New York

    MATH  Google Scholar 

  38. Loria G (1930) Curve piane speciali, I. Zanichelli, Bologna

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Ritelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarpello, G.M., Ritelli, D. Elliptic integral solutions of spatial elastica of a thin straight rod bent under concentrated terminal forces. Meccanica 41, 519–527 (2006). https://doi.org/10.1007/s11012-006-9000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-006-9000-3

Keywords

Navigation