Skip to main content
Log in

The role of sex-differentiated variations in stress hormones, antioxidants, and neuroimmune responses in relation to social interaction impairment in a rodent model of autism

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

A Correction to this article was published on 09 April 2022

This article has been updated

Abstract

Males are more likely to develop autism as a neurodevelopmental disorder than females, but the mechanisms underlying male susceptibility are not fully understood. In this paper, we used a well-characterized propionic acid (PPA) rodent model of autism to study sex differences in stress hormones, antioxidants’ status, and the neuroimmune response that may contribute to the preponderance of autism in males. Sprague Dawley rats of both sexes were divided into a saline-treated group as controls and PPA-treated groups, receiving 250 mg/kg of PPA per day for three days. Animals’ social behavior was examined using the three-chamber social test. Hormones (ACTH, corticosterone, melatonin, and oxytocin), oxidative stress biomarkers (glutathione, glutathione-S-transferase, and ascorbic acid), and cytokines (IL-6, IL-1α, IL-10, and IFNγ) were measured in the brain tissue of all the animals. The results showed a sex dimorphic social response to PPA treatment, where males were more susceptible to the PPA treatment and exhibited a significant reduction in social behavior with no effects observed in females. Also, sex differences were observed in the levels of hormones, antioxidants, and cytokines. Female rats showed significantly higher corticosterone and lower oxytocin, antioxidants, and cytokine levels than males. The PPA treatment later modulated these baseline differences. Our study indicates that the behavioral manifestation of autism in PPA-treated males and not females could be linked to neural biochemical differences between the sexes at baseline, which might play a protective role in females. Our results can contribute to early intervention strategies and treatments used to control autism, an increasingly prevalent disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • Al-Suwailem E, Abdi S, El-Ansary A (2018) Sex differences in the glutamate signaling pathway in juvenile rats. J Neurosci Res 96(3):459–466

    Article  CAS  PubMed  Google Scholar 

  • Atkinson HC, Waddell BJ (1997) Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology 138(9):3842–3848

    Article  CAS  PubMed  Google Scholar 

  • Beck RD Jr, Wasserfall C, Ha GK, Cushman JD, Huang Z, Atkinson MA, Petitto JM (2005) Changes in hippocampal IL-15, related cytokines, and neurogenesis in IL-2 deficient mice. Brain Res 1041(2):223–230

    Article  CAS  PubMed  Google Scholar 

  • Besedovsky HO, del Rey AZ (2000) The cytokine-HPA axis feedback circuit. Z Rheumatol 59(2):II26–II30

    Article  Google Scholar 

  • Besedovsky HO, del Rey A (1996) Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 17(1):64–102

    Article  CAS  PubMed  Google Scholar 

  • Beutler E (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  • Borrás C, Gambini J, Gómez-Cabrera MC, Sastre J, Pallardó FV, Mann GE, Viña J (2005) 17β-oestradiol up-regulates longevity-related, antioxidant enzyme expression via the ERK1 and ERK2 [MAPK]/NFκB cascade. Aging Cell 4(3):113–118

    Article  PubMed  CAS  Google Scholar 

  • Bülbül M, Babygirija R, Cerjak D, Yoshimoto S, Ludwig K, Takahashi T (2011) Hypothalamic oxytocin attenuates CRF expression via GABAA receptors in rats. Brain Res 1387:39–45

    Article  PubMed  CAS  Google Scholar 

  • Carey MP, Deterd CH, De Koning J, Helmerhorst F, De Kloet ER (1995) The influence of ovarian steroids on hypothalamic-pituitary-adrenal regulation in the female rat. J Endocrinol 144(2):311–321

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Lee S, Won J, Jin Y, Hong Y, Hur T-Y, Kim J.H., Lee S.R., Hong Y. (2018) Pathophysiological and neurobehavioral characteristics of a propionic acidmediated autism-like rat model. PLoS One 13(2): e0192925. https://doi.org/10.1371/journal. pone.0192925

  • Christensen DL, Baio J, Van Naarden Braun K, Bilder D, Charles J, Constantino JN, Daniels J, Durkin MS, Fitzgerald RT, Kurzius-Spencer M, Lee L-C, Pettygrove S, Robinson C, Schulz E, Wells C, Wingate MS, Zahorodny W, Yeargin-Allsopp M, Centers for Disease Control and Prevention (CDC) (2016) Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveill Summ 65(3):1–23. https://doi.org/10.15585/mmwr.ss6503a1

  • Chrousos GP (2000) The role of stress and the hypothalamic–pituitary–adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes 24(2):S50–S55

    Article  CAS  Google Scholar 

  • Critchlow V, Liebelt RA, Bar-Sela M, Mountcastle W, Lipscomb HS (1963) Sex difference in resting pituitary-adrenal function in the rat. American Journal of Physiology-Legacy Content 205(5):807–815

    Article  CAS  Google Scholar 

  • Debono M, Ghobadi C, Rostami-Hodjegan A, Huatan H, Campbell MJ, Newell-Price J, Darzy K, Merke DP, Arlt W, Ross RJ (2009) Modified-release hydrocortisone to provide circadian cortisol profiles. The Journal of Clinical Endocrinology & Metabolism 94(5):1548–1554

    Article  CAS  Google Scholar 

  • Dong H, Xu J, Li W, Gan J, Lin W, Ke J, Jiang J, du L, Chen Y, Zhong X, Zhang D, Yeung SCJ, Li X, Zhang H (2017) Reciprocal androgen receptor/interleukin-6 crosstalk drives oesophageal carcinoma progression and contributes to patient prognosis. J Pathol 241(4):448–462. https://doi.org/10.1002/path.4839

    Article  CAS  PubMed  Google Scholar 

  • Dumais KM, Veenema AH (2016) Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol 40:1–23

    Article  CAS  PubMed  Google Scholar 

  • El-Ansary AK, Al-Daihan SK, El-Gezzery AR. (2011) On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups. Lipids Health Dis. 10: 142. https://doi.org/10.1186/1476- 511X-10-142 PMID: 21854591

  • El-Ansary AK, Ben Bacha AB, Kotb M. (2012) Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflammation. 9: 74. https://doi.org/10.1186/1742-2094-9-74 PMID: 22531301

  • El-Ansary AK, Shaker GH (2013) Rizk MZ role of gut–brain axis in the aetiology of neurodevelopmental disorders with reference to autism. J Clin Toxicol S6:005

    Google Scholar 

  • Fransen F, van Beek AA, Borghuis T, Meijer B, Hugenholtz F, van der Gaast-de Jongh C, de Vos P (2017). The impact of gut microbiota on gender-specific differences in immunity. Front immunol 8(JUN), 754. https://doi.org/10.3389/fimmu.2017.00754

  • Fujita Y, Fujita A, Ishima T, Hirai A, Suzuki S, Suganuma H, Hashimoto K (2020). Dietary intake of glucoraphanin during pregnancy and lactation prevents the behavioral abnormalities in the offspring after maternal immune activation. Neuropsychopharmacol Rep npr2.12112. https://doi.org/10.1002/npr2.12112

  • Gallucci WT, Baum A, Laue L, Rabin DS, Chrousos GP, Gold PW, Kling MA (1993) Sex differences in sensitivity of the hypothalamic-pituitary-adrenal axis. Health Psychol 12(5):420–425

    Article  CAS  PubMed  Google Scholar 

  • Gawryluk JW, Wang J-F, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14(1):123–130

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. International Journal of Endocrinology and Metabolism 10(2):486–489. https://doi.org/10.5812/ijem.3505

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomaa AM, Galal HM, Abou-Elgait AT (2017) Neuroprotective effects of melatonin administration against chronic immobilization stress in rats. International journal of physiology, pathophysiology and pharmacology 9(2):16–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield LJ Jr (2013) Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 22(8):589–600

    Article  PubMed  PubMed Central  Google Scholar 

  • Hastings WJ, Chang A-M, Ebstein RP, Shalev I (2018) Neuroendocrine stress response is moderated by sex and sex hormone receptor polymorphisms. Horm Behav 106:74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heberling C, Dhurjati P, Sasser M (2013) Hypothesis for a systems connectivity model of autism spectrum disorder pathogenesis: links to gut bacteria, oxidative stress, and intestinal permeability. Med Hypotheses 80(3):264–270. https://doi.org/10.1016/j.mehy.2012.11.044

  • Hoang YD, Nakamura BN, Luderer U (2009) Follicle-stimulating hormone and estradiol interact to stimulate glutathione synthesis in rat ovarian follicles and granulosa cells. Biol Reprod 81(4):636–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman GE, Moore N, Fiskum G, Murphy AZ (2003) Ovarian steroid modulation of seizure severity and hippocampal cell death after kainic acid treatment. Exp Neurol 182(1):124–134

    Article  CAS  PubMed  Google Scholar 

  • Hudson SP, Jacobson-Pick S, Anisman H (2014) Sex differences in behavior and pro-inflammatory cytokine mRNA expression following stressor exposure and re-exposure. Neuroscience 277:239–249

    Article  CAS  PubMed  Google Scholar 

  • Jagota SK, Dani HM (1982). A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal Biochem, 127(1), 178–182. https://doi.org/10.1016/0003-2697(82)90162-2

  • James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80(6):1611–1617

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Platt ML (2018) Oxytocin and vasopressin increase male-directed threats and vocalizations in female macaques. Sci Rep 8(1):1–14

    Article  Google Scholar 

  • Johnson EO, Kamilaris TC, Carter CS, Calogero AE, Gold PW, Chrousos GP (1996) The biobehavioral consequences of psychogenic stress in a small, social primate (Callithrix jacchus jacchus). Biol Psychiatry 40(5):317–337

    Article  CAS  PubMed  Google Scholar 

  • Kitay JI (1961) Sex differences in adrenal cortical secretion in the rat. Endocrinology 68(5):818–824

    Article  CAS  PubMed  Google Scholar 

  • Klein SL, Flanagan KL (2016, October 1) Sex differences in immune responses. Nat Rev Immunol 16:626–638. https://doi.org/10.1038/nri.2016.90

    Article  CAS  PubMed  Google Scholar 

  • Kwekel JC, Desai VG, Moland CL, Vijay V, Fuscoe JC (2013) Sex differences in kidney gene expression during the life cycle of F344 rats. Biol Sex Differ 4(1):1–13

    Article  CAS  Google Scholar 

  • Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 4:863

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang RE, Heil JWE, Ganten D, Hermann K, Unger T, Rascher W (1983) Oxytocin unlike vasopressin is a stress hormone in the rat. Neuroendocrinology 37(4):314–316

    Article  CAS  PubMed  Google Scholar 

  • Lo S-C, Scearce-Levie K, Sheng M (2015) Characterization of social behaviors in caspase-3 deficient mice OPEN. Nat Publ Group 6. https://doi.org/10.1038/srep18335

  • Love TM (2018) The impact of oxytocin on stress: the role of sex. Curr Opin Behav Sci 23:136–142

    Article  PubMed  PubMed Central  Google Scholar 

  • MacFabe DF, Cain NF, Boon F, Ossenkopp KP, Cain DP (2011). Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav Brain Res 217(1), 47-54MacFabe, D. F., Cain, N. E., Boon, F., Ossenk. https://doi.org/10.1016/j.bbr.2010.10.005

  • Maenner MJ, Shaw KA, Baio J, et al. (2016) Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States. MMWR Surveill Summ 2020, 69 (No. SS-4): 1–12. https://www.cdc.gov/mmwr/volumes/69/ss/ss6904a1.htm

  • McCarthy MM (1995) Estrogen modulation of oxytocin and its relation to behavior. Adv Exp Med Biol 395:235–245

    CAS  PubMed  Google Scholar 

  • McHenry J, Carrier N, Hull E, Kabbaj M (2014) Sex differences in anxiety and depression: role of testosterone. Front Neuroendocrinol 35(1):42–57

    Article  CAS  PubMed  Google Scholar 

  • Nankova BB, Agarwal R, Macfabe DF, La Gamma EF. (2014) Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells—possible relevance to autism spectrum disorders. PLoS One. 9: e103740. https://doi.org/10.1371/journal.pone.0103740 PMID: 25170769

  • Navarro F, Liu Y, Rhoads JM. (2016) Can probiotics benefit children with autism spectrum disorders? World J Gastroenterol. 22:10093–10102. https://doi.org/10.3748/wjg.v22.i46.10093 PMID: 28028357

  • Neumann ID (2008) Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol 20(6):858–865

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Krömer SA, Toschi N, Ebner K (2000) Brain oxytocin inhibits the (re) activity of the hypothalamo–pituitary–adrenal axis in male rats: involvement of hypothalamic and limbic brain regions. Regul Pept 96(1–2):31–38

    Article  CAS  PubMed  Google Scholar 

  • Paudel R, Raj K, Gupta YK, Singh S (2020) Oxiracetam and Zinc Ameliorates Autism-Like Symptoms in Propionic Acid Model of Rats. Neurotoxicity Research 37. https://doi.org/10.1007/s12640-020-00169-1

  • Pyter LM, Kelly SD, Harrell CS, Neigh GN (2013) Sex differences in the effects of adolescent stress on adult brain inflammatory markers in rats. Brain Behav Immun 30:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacharra M, Schäper M, Kleinbeck S, Blaszkewicz M, Golka K, Thriel C (2016) Neurobehavioral effects of exposure to propionic acid revisited—does psychosocial stress interfere with distractive effects in volunteers? NeuroToxicology. 55:102–111. https://doi.org/10.1016/j.neuro.2016.05.019

    Article  CAS  PubMed  Google Scholar 

  • Rea K, Dinan TG, Cryan JF (2016) The microbiome: a key regulator of stress and neuroinflammation. Neurobiology of stress 4:23–33. https://doi.org/10.1016/j.ynstr.2016.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Rein B, Ma K, Yan ZA (2020) Standardized social preference protocol for measuring social deficits in mouse models of autism. Nat Protoc 15(10):3464–3477. https://doi.org/10.1038/s41596-020-0382-9

  • Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2(7):e134. https://doi.org/10.1038/tp.2012.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Larrea MB, Leal AM, Martin C, Martinez R, Lacort M (1997) Antioxidant action of estrogens in rat hepatocytes. Rev Esp Fisiol 53(2):225–229

    CAS  PubMed  Google Scholar 

  • Sanchez MM, Mccormack K, Grand AP, Fulks R, Graff A, Maestripieri D (2010) Effects of sex and early maternal abuse on adrenocorticotropin hormone and cortisol responses to the corticotropin-releasing hormone challenge during the first 3 years of life in group-living rhesus monkeys. Dev Psychopathol 22(1):45–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartzer JJ, Careaga M, Onore CE, Rushakoff JA, Berman RF, Ashwood P (2013) Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatry 3(3):e240. https://doi.org/10.1038/tp.2013.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shams S, Foley KA, Kavaliers M, MacFabe DF, Ossenkopp K-P (2019) Systemic treatment with the enteric bacterial metabolic product propionic acid results in reduction of social behavior in juvenile rats: contribution to a rodent model of autism spectrum disorder. Dev Psychobiol 61(5):688–699. https://doi.org/10.1002/dev.21825

    Article  CAS  PubMed  Google Scholar 

  • Shultz SR, MacFabe DF, Ossenkopp KP, Scratch S, Whelan J, Taylor R, Cain DP (2008) Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism. Neuropharmacology 54(6):901–911. https://doi.org/10.1016/j.neuropharm.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Kaler LJ, Proctor TM, Teuscher C, Vandenbark AA, Offner H (2008) IL-13-mediated gender difference in susceptibility to autoimmune encephalomyelitis. J Immunol 180(4):2679–2685. https://doi.org/10.4049/jimmunol.180.4.2679

    Article  CAS  PubMed  Google Scholar 

  • Snyder MJ, Maddison DR (1997) Molecular phylogeny of glutathione-S-transferases. DNA Cell Biol 16(11):1373–1384

    Article  CAS  PubMed  Google Scholar 

  • Toufexis DJ, Wilson ME (2012) Dihydrotestosterone differentially modulates the cortisol response of the hypothalamic–pituitary–adrenal axis in male and female rhesus macaques, and restores circadian secretion of cortisol in females. Brain Res 1429:43–51

    Article  CAS  PubMed  Google Scholar 

  • Uvnäs-Moberg K (1997) Oxytocin linked antistress effects--the relaxation and growth response. Acta Physiol Scand Suppl 640:38–42

    PubMed  Google Scholar 

  • Velíšková J, DeSantis KA (2013) Sex and hormonal influences on seizures and epilepsy. Horm Behav 63(2):267–277

    Article  PubMed  CAS  Google Scholar 

  • Villa A, Rizzi N, Vegeto E, Ciana P, Maggi A (2015) Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci Rep 5:15224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Ahn YJ, Asmis R (2020) Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biol 31:101410

    Article  CAS  PubMed  Google Scholar 

  • Windle RJ, Shanks N, Lightman SL, Ingram CD (1997) Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology 138(7):2829–2834

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz B, Kutlu S, Mogulkoç R, Canpolat S, Sandal S, Tarakçi B, Kelestimur H (2000) Melatonin inhibits testosterone secretion by acting at hypothalamo-pituitary-gonadal axis in the rat. Neuro Endocrinol Lett; 21(4):301–306. PMID: 11455362

Download references

Acknowledgments

This research project was supported by the Deanship of Scientific Research, Princess Nourah Bint Abdulrahman University, Grant number RGP-1441-0027. The authors thank the Deanship of Scientific Research and RSSU at King Saud University for the technical support.

Availability of data and materials

The datasets generated analyses during the current study are available from the corresponding author on reasonable request.

Funding

This research project was supported by the Deanship of Scientific Research, Princess Nourah Bint Abdulrahman University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AE.

Formal analysis: SA.

Funding acquisition: KA.

Investigation: SA, NMA, SAA.

Methodology: RSB, SMA, SA.

Supervision: AE, KA.

Writing – original draft: AE.

Writing – review & editing: TSA, SA.

Corresponding author

Correspondence to Afaf El-Ansary.

Ethics declarations

Ethical approval

Ethical approval from the Institutional Review Board were obtained.

Consent of participants

NA

Consent for publication

All authors read the manuscript and agree to publish.

Competing interests

The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuaish, S., Al-Otaibi, N.M., Aabed, K. et al. The role of sex-differentiated variations in stress hormones, antioxidants, and neuroimmune responses in relation to social interaction impairment in a rodent model of autism. Metab Brain Dis 36, 1369–1379 (2021). https://doi.org/10.1007/s11011-021-00732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00732-5

Keywords

Navigation