Skip to main content
Log in

Hesperidin protects against behavioral alterations and loss of dopaminergic neurons in 6-OHDA-lesioned mice: the role of mitochondrial dysfunction and apoptosis

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hesperidin is a flavonoid glycoside that is frequently found in citrus fruits. Our group have demonstrated that hesperidin has neuroprotective effect in 6-hydroxydopamine (6-OHDA) model of Parkinson’s disease (PD), mainly by antioxidant mechanisms. Although the pathophysiology of PD remains uncertain, a large body of evidence has demonstrated that mitochondrial dysfunction and apoptosis play a critical role in dopaminergic nigrostriatal degeneration. However, the ability of hesperidin in modulating these mechanisms has not yet been investigated. In the present study, we examined the potential of a 28-day hesperidin treatment (50 mg/kg/day, p.o.) in preventing behavioral alterations induced by 6-OHDA injection via regulating mitochondrial dysfunction, apoptosis and dopaminergic neurons in the substantia nigra pars compacta (SNpc) in C57BL/6 mice. Our results demonstrated that hesperidin treatment improved motor, olfactory and spatial memory impairments elicited by 6-OHDA injection. Moreover, hesperidin treatment attenuated the loss of dopaminergic neurons (TH+ cells) in the SNpc and the depletion of dopamine (DA) and its metabolities 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum of 6-OHDA-lesioned mice. Hesperidin also protected against the inhibition of mitochondrial respiratory chain complex-I, -IV and V, the decrease of Na + -K + -ATPase activity and the increase of caspase-3 and -9 activity in the striatum. Taken together, our findings indicate that hesperidin mitigates the degeneration of dopaminergic neurons in the SNpc by preventing mitochondrial dysfunction and modulating apoptotic pathways in the striatum of 6-OHDA-treated mice, thus improving behavioral alterations. These results provide new insights on neuroprotective mechanisms of hesperidin in a relevant preclinical model of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgments

The authors are grateful for financial support by FAPERGS (#16/2551-0000526-5 (PRONUPEQ) and CNPq (#430841/2016-7 (Universal)) Research Grants. LCS is recipient by CNPq fellowship [150560/2019–2]. We would like to thank professor Cristiano Ricardo Jesse for the study design, interpretation of the data and for provided their thoughts and his contribution to the development of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Cattelan Souza.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, M.S., Ladd, F.V.L., Ladd, A.A.B.L. et al. Hesperidin protects against behavioral alterations and loss of dopaminergic neurons in 6-OHDA-lesioned mice: the role of mitochondrial dysfunction and apoptosis. Metab Brain Dis 36, 153–167 (2021). https://doi.org/10.1007/s11011-020-00618-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00618-y

Keywords

Navigation