Skip to main content

Advertisement

Log in

Omega-3 fatty acids and mood stabilizers alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Studies have shown that oxidative stress is involved in the pathophysiology of bipolar disorder (BD). It is suggested that omega-3 (ω3) fatty acids are fundamental to maintaining the functional integrity of the central nervous system. The animal model used in this study displayed fenproporex-induced hyperactivity, a symptom similar to manic BD. Our results showed that the administration of fenproporex, in the prevent treatment protocol, increased lipid peroxidation in the prefrontal cortex (143%), hippocampus (58%) and striatum (181%), and ω3 fatty acids alone prevented this change in the prefrontal cortex and hippocampus, whereas the co-administration of ω3 fatty acids with VPA prevented the lipoperoxidation in all analyzed brain areas, and the co-administration of ω3 fatty acids with Li prevented this increase only in the prefrontal cortex and striatum. Moreover, superoxide dismutase (SOD) activity was decreased in the striatum (54%) in the prevention treatment, and the administration of ω3 fatty acids alone or in combination with Li and VPA partially prevented this inhibition. On the other hand, in the reversal treatment protocol, the administration of fenproporex increased carbonyl content in the prefrontal cortex (25%), hippocampus (114%) and striatum (91%), and in prefrontal coxter the administration of ω3 fatty acids alone or in combination with Li and VPA reversed this change, whereas in the hippocampus and striatum only ω3 fatty acids alone or in combination with VPA reversed this effect. Additionally, the administration of fenproporex resulted in a marked increase of TBARS in the hippocampus and striatum, and ω3 fatty acids alone or in combination with Li and VPA reversed this change. Finally, fenproporex administration decreased SOD activity in the prefrontal cortex (85%), hippocampus (52%) and striatum (76%), and the ω3 fatty acids in combination with VPA reversed this change in the prefrontal cortex and striatum, while the co-administration of ω3 fatty acids with Li reversed this inhibition in the hippocampus and striatum. In conclusion, our results support other studies showing the importance of ω3 fatty acids in the brain and the potential for these fatty acids to aid in the treatment of BD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreazza AC, Cassini C, Rosa AR, Leite MC, de Almeida LM, Nardin P, Cunha AB, Ceresér KM, Santin A, Gottfried C, Salvador M, Kapczinski F (2007a) Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 41:523–529. doi:10.1016/j.jpsychires.2006.07.013

    Article  PubMed  Google Scholar 

  • Andreazza AC, Frey BN, Erdtmann B, Salvador M, Rombaldi F, Santin A, Gonçalves CA, Kapczinski F (2007b) DNA damage in bipolar disorder. Psychiatry Res 153:27–32. doi:10.1016/j.psychres.2006.03.025

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Kauer-Sant’Anna M, Frey BN, Bond DJ, Kapczinski F, Young LT, Yatham LN (2008) Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 111:135–144. doi:10.1016/j.jad.2008.04.013

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, Walz JC, Bond DJ, Gonçalves CA, Young LT, Yatham LN (2009) 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatry Neurosci 34:263–271

    PubMed  PubMed Central  Google Scholar 

  • Andreazza AC, Shao L, Wang JF, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67:360–368. doi:10.1001/archgenpsychiatry.2010.22

    Article  CAS  PubMed  Google Scholar 

  • Arunagiri P, Rajeshwaran K, Shanthakumar J, Tamilselvan T, Balamurugan E (2014) Combination of omega-3 fatty acids, lithium, and aripiprazole reduces oxidative stress in brain of mice with mania. Biol Trace Elem Res 160:409–417. doi:10.1007/s12011-014-0067-8

    Article  CAS  PubMed  Google Scholar 

  • Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    Article  CAS  PubMed  Google Scholar 

  • Barros DM, Izquierdo LA, Medina JH, Izquierdo I (2002) Bupropion and sertraline enhance retrieval of recent and remote long-term memory in rats. Behav Pharmacol 13:215–220

    Article  CAS  Google Scholar 

  • Beydoun MA, Kaufman JS, Satia JA, Rosamond W, Folsom AR (2007) Plasma n-3 fatty acids and the risk of cognitive decline in older adults: the Atherosclerosis Risk in Communities Study. Am J Clin Nutr 85:1103–1111

    CAS  PubMed  Google Scholar 

  • Cancelier K, Gomes LM, Carvalho-Silva M, Teixeira LJ, Rebelo J, Mota IT, Arent CO, Mariot E, Kist LW, Bogo MR, Quevedo J, Scaini G, Streck EL (2016) Omega-3 fatty acids and mood stabilizers alter behavioural and energy metabolism parameters in animals subjected to an animal model of mania induced by fenproporex. Mol Neurobiol. doi:10.1007/s12035-016-9933-z

    PubMed  Google Scholar 

  • Chalon S (2006) Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 75:259–269. doi:10.1016/j.plefa.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  • Chalon S, Delion-Vancassel S, Belzung C, Guilloteau D, Leguisquet AM, Besnard JC, Durand G (1998) Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J Nutr 128:2512–2519

    CAS  PubMed  Google Scholar 

  • Chang MC, Jones CR (1998) Chronic lithium treatment decreases brain phospholipase A2 activity. Neurochem Res 23(6):887–892

    Article  CAS  PubMed  Google Scholar 

  • Clayton EH, Hanstock TL, Hirneth SJ, Kable CJ, Garg ML, Hazell PL (2009) Reduced mania and depression in juvenile bipolar disorder associated with long-chain omega-3 polyunsaturated fatty acid supplementation. Eur J Clin Nutr 63:1037–1040. doi:10.1038/ejcn.2008.81

    Article  CAS  PubMed  Google Scholar 

  • Cody JT, Valtier S, Stillman S (1999) Amphetamine and fenproporex levels following multidose administration of fenproporex. J Anal Toxicol 23:187–194

    Article  CAS  PubMed  Google Scholar 

  • Conquer J, Tierney MC, Zecevic J, Bettger WJ, Fisher RH (2000) Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 35:1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Corrigan FM, Horrobin DF, Skinner ER, Besson JA, Cooper MB (1998) Abnormal content of n-6 and n-3 long-chain unsaturated fatty acids in the phosphoglycerides and cholesterol esters of parahippocampal cortex from Alzheimer’s disease patients and its relationship to acetyl CoA content. Int J Biochem Cell Biol 30(2):197–207

    Article  CAS  PubMed  Google Scholar 

  • Coutts RT, Nazarali AJ, Baker GB, Pasutto FM (1986) Metabolism and disposition of N-(2-cyanoethyl)-amphetamine (fenproporex) and amphetamine: study in the rat brain. Can J Physiol Pharmacol 64:724–728

    Article  CAS  PubMed  Google Scholar 

  • Dullemeijer C, Durga J, Brouwer IA, van de Rest O, Kok FJ, Brummer RJ, van Boxtel MP, Verhoef P (2007) n-3 fatty acid proportions in plasma and cognitive performance in older adults. Am J Clin Nutr 86:1479–1485

    CAS  PubMed  Google Scholar 

  • Ericson E, Samuelsson J, Ahlenius S (1991) Photocell measurements of rat motor activity. a contribution to sensitivity and variation in behavioral observations. J Pharmacol Methods 25:111–122. doi:10.1016/0160-5402(91)90002-M

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. doi:10.1016/0076-6879(90)86134-H

    Article  CAS  PubMed  Google Scholar 

  • Finnen MJ, Lovell CR (1991) Purification and characterisation of phospholipase A2 from human epidermis. Biochem Soc Trans 19(2):91S

    Article  CAS  PubMed  Google Scholar 

  • Fountoulakis KN, Gonda X, Siamouli M, Rihmer Z (2009) Psychotherapeutic intervention and suicide risk reduction in bipolar disorder: a review of the evidence. J Affect Disord 113:21–29. doi:10.1016/j.jad.2008.06.014

    Article  PubMed  Google Scholar 

  • Freeman MP, Hibbeln JR, Wisner KL, Davis JM, Mischoulon D, Peet M, Keck PE Jr, Marangell LB, Richardson AJ, Lake J, Stoll AL (2006) Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiat 67:1954–1967

    Article  CAS  Google Scholar 

  • Frey BN, Andreazza AC, Cereser KM, Martins MR, Valvassori SS, Reus GZ, Quevedo J, Kapczinski F (2006a) Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sci 79:281–286. doi:10.1016/j.lfs.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  • Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006b) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatr Neurosci 31:326–332

    Google Scholar 

  • Gama CS, Canever L, Panizzutti B, Gubert C, Stertz L, Massuda R, Pedrini M, de Lucena DF, Luca RD, Fraga DB, Heylmann AS, Deroza PF, Zugno AI (2012) Effects of omega-3 dietary supplement in prevention of positive, negative and cognitive symptoms: a study in adolescent rats with ketamine-induced model of schizophrenia. Schizophr Res 141:162–167. doi:10.1016/j.schres.2012.08.002

    Article  PubMed  Google Scholar 

  • Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14:123–130. doi:10.1017/S1461145710000805

    Article  CAS  PubMed  Google Scholar 

  • Godwin A, Prabhu HR (2006) Lipid peroxidation of fish oils. Indian J Clin 21:202–204. doi:10.1007/BF02913098

    Article  CAS  Google Scholar 

  • Halliwell B (2011) Free radicals and antioxidants – quo vadis? Trends Pharmacol Sci 32:125–130. doi:10.1016/j.tips.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Lee CY (2010) Using isoprostanes as biomarkers of oxidative stress: some rarely considered issues. Antioxid Redox Signal 13:145–156. doi:10.1089/ars.2009.2934

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn S, van Boxtel MP, Verschuren WM, Kromhout D, Launer LJ (2004) Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62:275–280

    Article  CAS  PubMed  Google Scholar 

  • Kroger E, Verreault R, Carmichael PH, Lindsay J, Julien P, Dewailly E, Ayotte P, Laurin D (2009) Omega-3 fatty acids and risk of dementia: the Canadian Study of Health and Aging. Am J Clin Nutr 90:184–192

    Article  CAS  PubMed  Google Scholar 

  • Kulak A, Steullet P, Cabungcal JH, Werge T, Ingason A, Cuenod M, Do KQ (2013) Redox dysregulation in the pathophysiology of schizophrenia and bipolar disorder: insights from animal models. Antioxid Redox Signal 18:1428–1443. doi:10.1089/ars.2012.4858

    Article  CAS  PubMed  Google Scholar 

  • Kupfer DJ (2005) The increasing medical burden in bipolar disorder. JAMA 293:2528–2530. doi:10.1001/jama.293.20.2528

    Article  CAS  PubMed  Google Scholar 

  • Levine RL, Garland D, Oliver CN (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. doi:10.1016/0076-6879(90)86141-H

    Article  CAS  PubMed  Google Scholar 

  • Logan AC (2003) Neurobehavioral aspects of omega-3 fatty acids: possible mechanisms and therapeutic value in major depression. Altern Med Rev 8:410–425

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35:676–692. doi:10.1016/j.pnpbp.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  • Manji HK, Lenox RH (1999) Ziskind-Somerfeld Research Award. protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 46:1328–1351. doi:10.1016/S0006-3223(99)00235-8

    Article  CAS  PubMed  Google Scholar 

  • Marwa AAD, Ahmed AE, Azza AAA, Chelsey P, Shehta AS, Abdalla MEM (2014) Valproate-induced liver injury: modulation by the omega-3 fatty acid DHA proposes a novel anticonvulsant regimen. Drugs R D 14:85–94. doi:10.1007/s40268-014-0042-z

    Article  Google Scholar 

  • Mattei R, Carlini EA (1996) Acomparative study of the anorectic and behavioral effects of fenproporex on male and female rats. Braz J Med Biol Res 29:1025–1030

    CAS  PubMed  Google Scholar 

  • McNamara RK (2009) Evaluation of docosahexaenoic acid deficiency as a preventable risk factor for recurrent affective disorders: current status, future directions, and dietary recommendations. Prostaglandins Leukot Essent Fatty Acids 81:223–231. doi:10.1016/j.plefa.2009.05.017

    Article  CAS  PubMed  Google Scholar 

  • McNamara R (2013) Long-chain omega-3 fatty acid deficiency in mood disorders: rationale for treatment and prevention. Curr Drug Discov Technol 15:156–161

    Google Scholar 

  • McNamara RK, Sullivan J, Richtand NM (2008) Omega-3 fatty acid deficiency augments amphetamine-induced behavioral sensitization in adult mice: prevention by chronic lithium treatment. J Psychiatr Res 42:458–468. doi:10.1016/j.jpsychires.2007.05.009

    Article  PubMed  Google Scholar 

  • McNamara RK, Strimpfel J, Jandacek RJ, Rider T, Tso P, Welge J, Strawn JR, Delbello MP (2014) Detection and treatment of long-chain omega-3 fatty acid deficiency in adolescents with SSRI-resistant major depressive disorder. PharmaNutrition 2:38–46. doi:10.1016/j.phanu.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Model CS, Gomes LM, Scaini G, Ferreira GK, Goncalves CL, Rezin GT, Steckert AV, Valvassori SS, Varela RB, Quevedo J, Streck EL (2014) Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration. Metab Brain Dis 29:185–192. doi:10.1007/s11011-013-9473-4

    Article  CAS  PubMed  Google Scholar 

  • Mori TA, Puddey IB, Burke V, Croft KD, Dunstan DW, Rivera JH (2000) Effect of omega 3 fatty acids on oxidative stress in humans: GC-MS measurement of urinary F2-isoprostane excretion. Redox Rep 5:45–46. doi:10.1179/rer.2000.5.1.45

    Article  CAS  PubMed  Google Scholar 

  • Nemets H, Nemets B, Apter A, Bracha Z, Belmaker RH (2006) Omega-3 treatment of childhood depression: a controlled, double-blind pilot study. Am J Psychiatry 163:1098–1100. doi:10.1176/ajp.2006.163.6.1098

    Article  PubMed  Google Scholar 

  • Ng F, Berk M, Dean O, Bush AI (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11:851–876. doi:10.1017/S1461145707008401

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y (1992) Membrane phospholipid degradation and protein kinase C for cell signaling. Neurosci Res 15:3–5

    Article  CAS  PubMed  Google Scholar 

  • Noaghiul S, Hibbeln JR (2003) Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am J Psychiatry 160:2222–2227. doi:10.1176/appi.ajp.160.12.2222

    Article  PubMed  Google Scholar 

  • Ozyurt B, Sarsilmaz M, Akpolat N, Ozyurt H, Akyol O, Herken H, Kus I (2007) The protective effects of omega-3 fatty acids against MK-801-induced neurotoxicity in prefrontal cortex of rat. Neurochem Int 50:196–202. doi:10.1016/j.neuint.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33. doi:10.1016/S0014-2999(03)01272-X

    Article  CAS  PubMed  Google Scholar 

  • Rao JS, Lee HJ, Rapoport SI, Bazinet RP (2008) Mode of action of mood stabilizers: is the arachidonic acid cascade a common target? Mol Psychiatry 13:585–596. doi:10.1038/mp.2008.31

    Article  CAS  PubMed  Google Scholar 

  • Rezin GT, Furlanetto CB, Scaini G, Valvassori SS, Goncalves CL, Ferreira GK, Jeremias IC, Resende WR, Cardoso MR, Varela RB, Quevedo J, Streck EL (2014) Fenproporex increases locomotor activity and alters energy metabolism, and mood stabilizers reverse these changes: a proposal for a new animal model of mania. Mol Neurobiol 49:877–892. doi:10.1007/s12035-013-8566-8

    Article  CAS  PubMed  Google Scholar 

  • Samieri C, Féart C, Letenneur L, Dartigues JF, Pérès K, Auriacombe S, Peuchant E, Delcourt C, Barberger-Gateau P (2008) Low plasma eicosapentaenoic acid and depressive symptomatology are independent predictors of dementia risk. Am J Clin Nutr 88:714–721

    CAS  PubMed  Google Scholar 

  • Scapagnini G, Davinelli S, Drago F, De Lorenzer A, Oriani G (2012) Antioxidants as antidepressants fact or fiction? CNS Drugs 26:477–490. doi:10.2165/11633190-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  • Scola G, Kim HK, Young LT, Andreazza AC (2012) A fresh look at complex I in microarray data: clues to understanding disease-specific mitochondrial alterations in bipolar disorder. Biol Psychiatry 73:4–5. doi:10.1016/j.biopsych.2012.06.028

    Article  Google Scholar 

  • Seung Kim HF, Weeber EJ, Sweatt JD, Stoll AL, Marangell LB (2001) Inhibitory effects of omega-3 fatty acids on protein kinase C activity in vitro. Mol Psychiatry 6(2):246–248

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S

    Article  CAS  PubMed  Google Scholar 

  • Söderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421–425

    Article  PubMed  Google Scholar 

  • Stoll AL, Severus WE, Freeman MP, Rueter S, Zboyan HA, Diamond E, Cress KK, Marangell LB (1999) Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry 56:407–412

    Article  CAS  PubMed  Google Scholar 

  • Tapia-Saavedra A (2005) Estrés oxidativo y depresión. ¿Un posible rol etiológico? Rev Chil Neuro-Psiquiat 43:329–336. doi:10.4067/S0717-92272005000400007

    Article  Google Scholar 

  • Tully A, Roche HM, Doyle R, Fallon C, Bruce I, Lawlor B, Coakley D, Gibney MJ (2003) Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: a case-control study. Br J Nutr 89:483–489

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. doi:10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  • van Enkhuizen J, Janowsky DS, Olivier B, Minassian A, Perry W, Young JW, Geyer MA (2015) The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited. Eur J Pharmacol 753:114–126. doi:10.1016/j.ejphar.2014.05.063

    Article  PubMed  Google Scholar 

  • Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the antiinflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68:280–289. doi:10.1111/j.1753-4887.2010.00287.x

    Article  PubMed  Google Scholar 

  • Whalley LJ, Deary IJ, Starr JM, Wahle KW, Rance KA, Bourne VJ, Fox HC (2008) n-3 Fatty acid erythrocyte membrane content, APOE ε4, and cognitive variation: an observational follow-up study in late adulthood. Am J Clin Nutr 87:449–454

    CAS  PubMed  Google Scholar 

  • Wozniak J, Biederman J, Mick E, Waxmonsky J, Hantsoo L, Best C, Cluette-Brown JE, Laposata M (2007) Omega-3 fatty acid monotherapy for pediatric bipolar disorder: a prospective open-label trial. Eur Neuropsychopharmacol 17:440–447. doi:10.1016/j.euroneuro.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  • Wultz B, Sagvolden T, Moser EI, Moser MB (1990) The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol 53:88–102

    Article  CAS  PubMed  Google Scholar 

  • Young G, Conquer J (2005) Omega-3 fatty acids and neuropsychiatric disorders. Reprod Nutr Dev 45:1–28

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Singh J, Manji HK (2006) Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry 59:1006–1020. doi:10.1016/j.biopsych.2005.10.021

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Li P, Hu X, Zhang F, Chen J, Gao Y (2011) Omega-3 polyunsaturated fatty acids in the brain: metabolism and neuroprotection. Front Biosci 16:2653–2670

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the authors who have provided relevant clarification on their articles. The Laboratory of Bioenergetics and Laboratory of Neurosciences (Brazil) are some of the centres of theNational Institute for Molecular Medicine (INCT-MM) and members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). Translational Psychiatry Program (USA) is funded by the Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston. This research was supported by grants from CNPq (ELS and JQ), FAPESC (ELS and JQ), Instituto Cérebro e Mente (JQ) and UNESC (ELS and JQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giselli Scaini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, L.M., Carvalho-Silva, M., Teixeira, L.J. et al. Omega-3 fatty acids and mood stabilizers alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration. Metab Brain Dis 32, 519–528 (2017). https://doi.org/10.1007/s11011-016-9942-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-016-9942-7

Keywords

Navigation