Skip to main content
Log in

Glycine and hyperammonemia: potential target for the treatment of hepatic encephalopathy

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hepatic encephalopathy (HE) is a neuropsychiatric disorder caused by hepatic dysfunction. Numerous studies dictate that ammonia plays an important role in the pathogenesis of HE, and hyperammonemia can lead to alterations in amino acid homeostasis. Glutamine and glycine are both ammoniagenic amino acids that are increased in liver failure. Modulating the levels of glutamine and glycine has shown to reduce ammonia concentration in hyperammonemia. Ornithine Phenylacetate (OP) has consistently been shown to reduce arterial ammonia levels in liver failure by modulating glutamine levels. In addition to this, OP has also been found to modulate glycine concentration providing an additional ammonia removing effect. Data support that glycine also serves an important role in N-methyl D-aspartate (NMDA) receptor mediated neurotransmission in HE. This potential important role for glycine in the pathogenesis of HE merits further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

HE:

Hepatic encephalopathy

GCS:

Glycine cleavage system

OP:

L-ornithine Phenylacetate

GS:

Glutamine synthetase

GDH:

Glutamate dehydrogenase

ALF:

Acute liver failure

NMDA receptor:

N-methyl–D-aspartate

NKH:

Non-ketotic hyperglycinemia

References

  • Balasubramaniyan V, Wright G, et al. (2012) Ammonia reduction with ornithine phenylacetate restores brain eNOS activity via the DDAH-ADMA pathway in bile duct-ligated cirrhotic rats. Am J Physiol Gastrointest Liver Physiol 302(1):G145–G152

    Article  CAS  PubMed  Google Scholar 

  • Bernal W, Hall C, et al. (2007) Arterial ammonia and clinical risk factors for encephalopathy and intracranial hypertension in acute liver failure. Hepatology 46(6):1844–1852

    Article  CAS  PubMed  Google Scholar 

  • Bosman DK, Deutz NE, et al. (1992) Amino acid release from cerebral cortex in experimental acute liver failure, studied by in vivo cerebral cortex microdialysis. J Neurochem 59(2):591–599

    Article  CAS  PubMed  Google Scholar 

  • Brusilow S, Tinker J, et al. (1980) Amino acid acylation: a mechanism of nitrogen excretion in inborn errors of urea synthesis. Science 207(4431):659–661

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF (1997) Hepatic encephalopathy and brain edema in acute hepatic failure: does glutamate play a role? Hepatology 25(4):1032–1034

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF (2014) Pathophysiology of brain dysfunction in hyperammonemic syndromes: the many faces of glutamine. Mol Genet Metab 113(1–2):113–117

    Article  CAS  PubMed  Google Scholar 

  • Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P (1999) Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 29(3):648–653

    Article  CAS  PubMed  Google Scholar 

  • Clemmesen JO, Kondrup J, et al. (2000) Splanchnic and leg exchange of amino acids and ammonia in acute liver failure. Gastroenterology 118(6):1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67(2):440–519

    CAS  PubMed  Google Scholar 

  • Dadsetan S, Sorensen M, et al. (2013) Interorgan metabolism of ornithine phenylacetate (OP)--a novel strategy for treatment of hyperammonemia. Biochem Pharmacol 85(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Davies NA, Wright G, et al. (2009) L-ornithine and phenylacetate synergistically produce sustained reduction in ammonia and brain water in cirrhotic rats. Hepatology 50(1):155–164

    Article  CAS  PubMed  Google Scholar 

  • Desjardins P, Rao KV, et al. (1999) Effect of portacaval anastomosis on glutamine synthetase protein and gene expression in brain, liver and skeletal muscle. Metab Brain Dis 14(4):273–280

    Article  CAS  PubMed  Google Scholar 

  • Enns GM, Berry SA, et al. (2007) Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med 356(22):2282–2292

    Article  CAS  PubMed  Google Scholar 

  • Hamosh A, Maher JF, et al. (1998) Long-term use of high-dose benzoate and dextromethorphan for the treatment of nonketotic hyperglycinemia. J Pediatr 132(4):709–713

    Article  CAS  PubMed  Google Scholar 

  • Jalan R, Lee WM (2009) Treatment of hyperammonemia in liver failure: a tale of two enzymes. Gastroenterology 136(7):2048–2051

    Article  CAS  PubMed  Google Scholar 

  • Jalan R, Wright G, et al. (2007) L-ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy. Med Hypotheses 69(5):1064–1069

    Article  CAS  PubMed  Google Scholar 

  • Jover-Cobos M, Noiret L, et al. (2013) Ornithine phenylacetate revisited. Metab Brain Dis 28(2):327–331

    Article  CAS  PubMed  Google Scholar 

  • Jover-Cobos M, Noiret L, et al. (2014) Ornithine phenylacetate targets alterations in the expression and activity of glutamine synthase and glutaminase to reduce ammonia levels in bile duct ligated rats. J Hepatol 60(3):545–553

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi G (1973) The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1(2):169–187

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen RG, Rose CF, et al. (2014) L-ornithine phenylacetate reduces ammonia in pigs with acute liver failure through phenylacetylglycine formation: a novel ammonia-lowering pathway. Am J Physiol Gastrointest Liver Physiol 307(10):G1024–G1031

    Article  CAS  PubMed  Google Scholar 

  • Mans AM, DeJoseph MR, et al. (1994) Metabolic abnormalities and grade of encephalopathy in acute hepatic failure. J Neurochem 63(5):1829–1838

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195(4284):1356–1358

    Article  CAS  PubMed  Google Scholar 

  • McGuire BM, Zupanets IA, Lowe ME, Xiao X, Syplyviy VA, Monteleone J, Gargosky S, Dickinson K, Martinez A, Mokhtarani M, Scharschmidt BF (2010) Pharmacology and safety of glycerol phenylbutyrate in healthy adults and adults with cirrhosis. Hepatology 51(6):2077–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendenhall CL, Rouster S, et al. (1986) A new therapy for portal systemic encephalopathy. Am J Gastroenterol 81(7):540–543

    CAS  PubMed  Google Scholar 

  • Michalak A, Rose C, et al. (1996) Neuroactive amino acids and glutamate (NMDA) receptors in frontal cortex of rats with experimental acute liver failure. Hepatology 24(4):908–913

    Article  CAS  PubMed  Google Scholar 

  • Misel ML, Gish RG, et al. (2013) Sodium benzoate for treatment of hepatic encephalopathy. Gastroenterol Hepatol (N Y) 9(4):219–227

    Google Scholar 

  • Ong JP, Aggarwal A, et al. (2003) Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med 114(3):188–193

    Article  CAS  PubMed  Google Scholar 

  • Oria M, Romero-Gimenez J, et al. (2012) Ornithine phenylacetate prevents disturbances of motor-evoked potentials induced by intestinal blood in rats with portacaval anastomosis. J Hepatol 56(1):109–114

    Article  CAS  PubMed  Google Scholar 

  • Ott P, Vilstrup H (2014) Cerebral effects of ammonia in liver disease: current hypotheses. Metab Brain Dis 29(4):901–911

    Article  CAS  PubMed  Google Scholar 

  • Record CO, Buxton B, et al. (1976) Plasma and brain amino acids in fulminant hepatic failure and their relationship to hepatic encephalopathy. Eur J Clin Investig 6(5):387–394

    Article  CAS  Google Scholar 

  • Rockey DC, Vierling JM, et al. (2014) Randomized, double-blind, controlled study of glycerol phenylbutyrate in hepatic encephalopathy. Hepatology 59(3):1073–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose CF (2012) Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clin Pharmacol Ther 92(3):321–331

    Article  CAS  PubMed  Google Scholar 

  • Rose C, Michalak A, et al. (1999) L-ornithine-L-aspartate lowers plasma and cerebrospinal fluid ammonia and prevents brain edema in rats with acute liver failure. Hepatology 30(3):636–640

    Article  CAS  PubMed  Google Scholar 

  • Rudman D, Galambos JT, et al. (1973) Comparison of the effect of various amino acids upon the blood ammonia concentration of patients with liver disease. Am J Clin Nutr 26(9):916–925

    CAS  PubMed  Google Scholar 

  • Sakata Y, Owada Y, et al. (2001) Structure and expression of the glycine cleavage system in rat central nervous system. Brain Res Mol Brain Res 94(1–2):119–130

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Yoshida S, et al. (1991) Glycine cleavage system in astrocytes. Brain Res 567(1):64–70

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Svenneby G, Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem 29(6):999–1005

    Article  CAS  PubMed  Google Scholar 

  • Strauss GI, Knudsen GM, et al. (2001) Cerebral metabolism of ammonia and amino acids in patients with fulminant hepatic failure. Gastroenterology 121(5):1109–1119

    Article  CAS  PubMed  Google Scholar 

  • Suarez I, Bodega G, Fernandez B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41(2–3):123–142

    Article  CAS  PubMed  Google Scholar 

  • Sushma S, Dasarathy S, et al. (1992) Sodium benzoate in the treatment of acute hepatic encephalopathy: a double-blind randomized trial. Hepatology 16(1):138–144

    Article  CAS  PubMed  Google Scholar 

  • Swain MS, Bergeron M, et al. (1992) Monitoring of neurotransmitter amino acids by means of an indwelling cisterna magna catheter: a comparison of two rodent models of fulminant liver failure. Hepatology 16(4):1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Tada K, Kure S (1993) Non-ketotic hyperglycinaemia: molecular lesion, diagnosis and pathophysiology. J Inherit Metab Dis 16(4):691–703

    Article  CAS  PubMed  Google Scholar 

  • Van Hove JL, Vande Kerckhove K, et al. (2005) Benzoate treatment and the glycine index in nonketotic hyperglycinaemia. J Inherit Metab Dis 28(5):651–663

    Article  PubMed  Google Scholar 

  • Vaquero J, Butterworth RF (2006) The brain glutamate system in liver failure. J Neurochem 98(3):661–669

    Article  CAS  PubMed  Google Scholar 

  • Ventura-Cots M, Arranz JA, et al. (2013) Safety of ornithine phenylacetate in cirrhotic decompensated patients: an open-label, dose-escalating, single-cohort study. J Clin Gastroenterol 47(10):881–887

    Article  CAS  PubMed  Google Scholar 

  • Vilstrup H, Amodio P, Bajaj J, Cordoba J, Ferenci P, Mullen KD, Weissenborn K, Wong P (2014) Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the liver. Hepatology 60(2):715–735

    Article  PubMed  Google Scholar 

  • Vogels BA, Maas MA, et al. (1997) Memantine, a noncompetitive NMDA receptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats. Hepatology 25(4):820–827

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wu Z, et al. (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45(3):463–477

    Article  PubMed  Google Scholar 

  • Wright G, Vairappan B, et al. (2012) Reduction in hyperammonaemia by ornithine phenylacetate prevents lipopolysaccharide-induced brain edema and coma in cirrhotic rats. Liver Int 32(3):410–419

    CAS  PubMed  Google Scholar 

  • Ytrebo LM, Kristiansen RG, et al. (2009) L-ornithine phenylacetate attenuates increased arterial and extracellular brain ammonia and prevents intracranial hypertension in pigs with acute liver failure. Hepatology 50(1):165–174

    Article  PubMed  Google Scholar 

  • Zwingmann C, Desjardins P, et al. (2002) Reduced expression of astrocytic glycine transporter (Glyt-1) in acute liver failure. Metab Brain Dis 17(4):263–273

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune Gangsøy Kristiansen.

Ethics declarations

Conflict of interest statement

None of the authors have anything to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristiansen, R.G., Rose, C.F. & Ytrebø, L.M. Glycine and hyperammonemia: potential target for the treatment of hepatic encephalopathy. Metab Brain Dis 31, 1269–1273 (2016). https://doi.org/10.1007/s11011-016-9858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-016-9858-2

Keywords

Navigation