Skip to main content

Advertisement

Log in

Neuroprotective effects of Pouteria ramiflora (Mart.) Radlk (Sapotaceae) extract on the brains of rats with streptozotocin-induced diabetes

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a chronic disease involving persistent hyperglycemia, which causes an imbalance between reactive oxygen species and antioxidant enzymes and results in damage to various tissues, including the brain. Many societies have traditionally employed medicinal plants to control the hyperglycemia. Pouteria ramiflora, a species occurring in the savanna biome of the Cerrado (Brazil) has been studied because of its possible ability to inhibit carbohydrate digestion. Rats with streptozotocin-induced diabetes treated with an alcoholic extract of Pouteria ramiflora show an improved glycemic level, increased glutathione peroxidase activity, decreased superoxide dismutase activity, and reduced lipid peroxidation and antioxidant status. The extract also restored myosin-Va expression and the nuclear diameters of pyramidal neurons of the CA3 subregion and that of the polymorphic cells of the hilus. We conclude that Pouteria ramiflora extract exerts a neuroprotective effect against oxidative damage and myosin-Va expression and is able to prevent hippocampal neuronal loss in the CA3 and hilus subfields of diabetic rats. However, future studies are needed to understand the mechanism of action of Pouteria ramiflora extract in acute and chronic diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfonso JE, Ariza ID (2008) New therapies for diabetes: beyond injectable insulin and oral antidiabetics. Rev Assoc Med Bras 54:447–454

    PubMed  Google Scholar 

  • Apostolidis E, Kwon Y-I, Shetty K (2007) Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Inn Food Sci Emerg Technol 8:46–54

    Article  CAS  Google Scholar 

  • Aragno M, Mastrocola R, Catalano MG, Brignardello E, Danni O, Boccuzzi G (2004) Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes 53:1082–1088

    Article  PubMed  CAS  Google Scholar 

  • Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    Article  PubMed  CAS  Google Scholar 

  • Bhor VM, Raghuram N, Sivakami S (2004) Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell Biol 36:89–97

    Article  PubMed  CAS  Google Scholar 

  • Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, Gispen WH (1994) Cerebral function in diabetes mellitus. Diabetologia 37:643–650

    Article  PubMed  CAS  Google Scholar 

  • Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Bose A, Guilherme A, Robida SI, Nicoloro SM, Zhou QL, Jiang ZY, Pomerleau DP, Czech MP (2002) Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature 420:821–824

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brinn LS, Pereira Leite J, Larson RE, Martins AR (2010) Differential patterns of myosin Va expression during the ontogenesis of the rat hippocampus. Braz J Med Biol Res 43:890–898

    Article  PubMed  CAS  Google Scholar 

  • Calabria LK, da Cruz GC, Nascimento R, Carvalho WJ, de Gouveia NM, Alves FV, Furtado FB, Ishikawa-Ankerhold HC, de Sousa MV, Goulart LR, Espindola FS (2011) Overexpression of myosin-IIB in the brain of a rat model of streptozotocin-induced diabetes. J Neurol Sci 303:43–49

    Article  PubMed  CAS  Google Scholar 

  • Ceriello A, Bortolotti N, Falleti E, Taboga C, Tonutti L, Crescentini A, Motz E, Lizzio S, Russo A, Bartoli E (1997) Total radical-trapping antioxidant parameter in NIDDM patients. Diabetes Care 20:194–197

    Article  PubMed  CAS  Google Scholar 

  • Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24:816–823

    Article  PubMed  CAS  Google Scholar 

  • Coirault C, Guellich A, Barbry T, Samuel JL, Riou B, Lecarpentier Y (2007) Oxidative stress of myosin contributes to skeletal muscle dysfunction in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 292:H1009–H1017

    Article  PubMed  CAS  Google Scholar 

  • da Costa AV, Calabria LK, Nascimento R, Carvalho WJ, Goulart LR, Espindola FS (2011) The streptozotocin-induced rat model of diabetes mellitus evidences significant reduction of myosin-Va expression in the brain. Metab Brain Dis 26:247–251

    Article  PubMed  CAS  Google Scholar 

  • Deconte SR, Oliveira RJ, Calabria LK, Oliveira VN, Gouveia NM, Moraes Ada S, Espindola FS (2011) Alterations of antioxidant biomarkers and type I collagen deposition in the parotid gland of streptozotocin-induced diabetic rats. Arch Oral Biol 56:744–751

    Article  PubMed  CAS  Google Scholar 

  • Eliza J, Daisy P, Ignacimuthu S (2010) Antioxidant activity of costunolide and eremanthin isolated from Costus speciosus (Koen ex. Retz) Sm. Chem Biol Interact 188:467–472

    Article  PubMed  CAS  Google Scholar 

  • Espindola FS, Suter DM, Partata LB, Cao T, Wolenski JS, Cheney RE, King SM, Mooseker MS (2000) The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN. Cell Motil Cytoskeleton 47:269–281

    Article  PubMed  CAS  Google Scholar 

  • Espindola FS, Banzi SR, Calabria LK, Custodio RJ, Oliveira RA, Procopio LD, Lima AB, Cunha-Junior JP, Coelho MV, Guedes IM, Pellizzon CH, Larson RE, Espreafico EM (2008) Localization of myosin-Va in subpopulations of cells in rat endocrine organs. Cell Tissue Res 333:263–279

    Article  PubMed  CAS  Google Scholar 

  • Fazeli SA, Gharravi AM, Jahanshahi M, Ghafari S, Behnampour N, Golalipour MJ (2009) Resistance of CA1 pyramidal cells to STZ-induced diabetes in young rats. Int J Morphol 27:997–1001

    Article  Google Scholar 

  • Funke I, Melzig MF (2006) Traditionally used plants in diabetes therapy - phytotherapeutics as inhibitors of a-amylase activity. Rev Bras Farmacogn 16:1–5

    Article  Google Scholar 

  • Godin DV, Wohaieb SA, Garnett ME, Goumeniouk AD (1988) Antioxidant enzyme alterations in experimental and clinical diabetes. Mol Cell Biochem 84:223–231

    Article  PubMed  CAS  Google Scholar 

  • Goke B, Herrmann-Rinke C (1998) The evolving role of alpha-glucosidase inhibitors. Diabetes Metab Rev 14(Suppl 1):S31–S38

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JM, Halliwell B (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci 899:136–147

    Article  PubMed  CAS  Google Scholar 

  • Hamdy NM, Taha RA (2009) Effects of Nigella sativa oil and thymoquinone on oxidative stress and neuropathy in streptozotocin-induced diabetic rats. Pharmacology 84:127–134

    Article  PubMed  CAS  Google Scholar 

  • Hasanein P, Shahidi S (2010) Effects of combined treatment with vitamins C and E on passive avoidance learning and memory in diabetic rats. Neurobiol Learn Mem 93:472–478

    Article  PubMed  CAS  Google Scholar 

  • Jarrard LE (1993) On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol 60:9–26

    Article  PubMed  CAS  Google Scholar 

  • Josephy DP (1997) Molecular Toxicology. Oxford University Press, New York

  • Kakkar R, Kalra J, Mantha SV, Prasad K (1995) Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol Cell Biochem 151:113–119

    Article  PubMed  CAS  Google Scholar 

  • Kesavulu MM, Giri R, Kameswara Rao B, Apparao C (2000) Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab 26:387–392

    PubMed  CAS  Google Scholar 

  • Kosif R, Aktas R, Oztekin A (2008) The effects of oral administration of Aloe vera [barbadensis] on rat central nervous system: an experimental preliminary study. Neuroanatomy 7:22–27

    Google Scholar 

  • Kowluru R, Chan P (2007) Oxidative stress and diabetic retinopathy. Exp Diabetes Res 2007:43603

    PubMed  Google Scholar 

  • Kuhad A, Chopra K (2007) Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences. Eur J Pharmacol 576:34–42

    Article  PubMed  CAS  Google Scholar 

  • Li ZG, Zhang W, Grunberger G, Sima AA (2002) Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 946:221–231

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Yang H, Basile MJ, Kennelly EJ (2004) Analysis of polyphenolic antioxidants from the fruits of three pouteria species by selected ion monitoring liquid chromatography-mass spectrometry. J Agric Food Chem 52:5873–5878

    Article  PubMed  CAS  Google Scholar 

  • Mihm MJ, Yu F, Reiser PJ, Bauer JA (2003) Effects of peroxynitrite on isolated cardiac trabeculae: selective impact on myofibrillar energetic controllers. Biochimie 85:587–596

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee B, Mukherjee JR, Chatterjee M (1994) Lipid peroxidation, glutathione levels and changes in glutathione-related enzyme activities in streptozotocin-induced diabetic rats. Immunol Cell Biol 72:109–114

    Article  PubMed  CAS  Google Scholar 

  • Pari L, Latha M (2004) Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats. BMC Complement Altern Med 4:16

    Article  PubMed  Google Scholar 

  • Perfetti R, Barnett PS, Mathur R, Egan JM (1998) Novel therapeutic strategies for the treatment of type 2 diabetes. Diabetes Metab Rev 14:207–225

    Article  PubMed  CAS  Google Scholar 

  • Qi WW, Zhong LY, Li XR, Li G, Liu ZX, Hu JF, Chen NH (2012) Hyperglycemia induces the variations of 11β-hydroxysteroid dehydrogenase type 1 and peroxisome proliferator-activated receptor-γ expression in hippocampus and hypothalamus of diabetic rats. Exp Diabetes Res 2012:107130

  • Rastogi M, Ojha RP, Rajamanickam GV, Agrawal A, Aggarwal A, Dubey GP (2008) Curcuminoids modulates oxidative damage and mitochondrial dysfunction in diabetic rat brain. Free Radic Res 42:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Reck-Peterson SL, Provance DW Jr, Mooseker MS, Mercer JA (2000) Class V myosins. Biochim Biophys Acta 1496:36–51

    Article  PubMed  CAS  Google Scholar 

  • Rudolf R, Bittins CM, Gerdes HH (2011) The role of myosin V in exocytosis and synaptic plasticity. J Neurochem 116:177–191

    Google Scholar 

  • Shanmugam KR, Mallikarjuna K, Kesireddy N, Sathyavelu Reddy K (2011) Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol 49:893–897

    Article  PubMed  CAS  Google Scholar 

  • Silva C, Simeoni L, Silveira D (2009) Genus pouteria: chemistry and biological activity. Braz J Pharmacogn 19:501–509

    CAS  Google Scholar 

  • Souza PM, Sales PM, Simeoni LA, Silva EC, Silveira D, Magalhaes Pde O (2012) Inhibitory activity of alpha-amylase and alpha-glucosidase by plant extracts from the Brazilian cerrado. Planta Med 78:393–399

    Article  PubMed  Google Scholar 

  • Taleb-Senouci D, Ghomari H, Krouf D, Bouderbala S, Prost J, Lacaille-Dubois MA, Bouchenak M (2009) Antioxidant effect of Ajuga iva aqueous extract in streptozotocin-induced diabetic rats. Phytomedicine 16:623–631

    Article  PubMed  CAS  Google Scholar 

  • Tilelli CQ, Martins AR, Larson RE, Garcia-Cairasco N (2003) Immunohistochemical localization of myosin Va in the adult rat brain. Neuroscience 121:573–586

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Van de Laar FA (2008) Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc Health Risk Manag 4:1189–1195

    PubMed  Google Scholar 

  • VanGilder RL, Kelly KA, Chua MD, Ptachcinski RL, Huber JD (2009) Administration of sesamol improved blood-brain barrier function in streptozotocin-induced diabetic rats. Exp Brain Res 197:23–34

    Article  PubMed  CAS  Google Scholar 

  • Varadi A, Tsuboi T, Rutter GA (2005) Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 16:2670–2680

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa S, Anand P, Bhowmick D (1999) Quantitative study of plasticity in the auditory nuclei of chick under conditions of prenatal sound attenuation and overstimulation with species specific and music sound stimuli. Int J Dev Neurosci 17:239–253

    Article  PubMed  CAS  Google Scholar 

  • Wolff SP (1993) Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 49:642–652

    PubMed  CAS  Google Scholar 

  • Ye L, Wang F, Yang RH (2011) Diabetes impairs learning performance and affects the mitochondrial function of hippocampal pyramidal neurons. Brain Res 1411:57–64

    Article  PubMed  CAS  Google Scholar 

  • Yoshizaki T, Imamura T, Babendure JL, Lu JC, Sonoda N, Olefsky JM (2007) Myosin 5a is an insulin-stimulated Akt2 (protein kinase Bbeta) substrate modulating GLUT4 vesicle translocation. Mol Cell Biol 27:5172–5183

    Article  PubMed  CAS  Google Scholar 

  • Zaltzberg H, Kanter Y, Aviram M, Levy Y (1999) Increased plasma oxidizability and decreased erythrocyte and plasma antioxidative capacity in patients with NIDDM. Isr Med Assoc J 1:228–231

    PubMed  CAS  Google Scholar 

  • Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 118:3695–3703

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Fernanda Vieira Alves for technical support and the Laboratory of Clinical Analysis of the School of Veterinary Medicine, Federal University of Uberlândia, especially Antônio Vicente Mundim and Felipe Cesar Gonçalves, for help in processing the biochemical data. This work was supported by grants from FAPEMIG to FSE, by a CAPES fellowship to LKC, RJOS and NMG, and a FAPEMIG fellowship to FBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foued Salmen Espindola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Costa, A.V., Calábria, L.K., Furtado, F.B. et al. Neuroprotective effects of Pouteria ramiflora (Mart.) Radlk (Sapotaceae) extract on the brains of rats with streptozotocin-induced diabetes. Metab Brain Dis 28, 411–419 (2013). https://doi.org/10.1007/s11011-013-9390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9390-6

Keywords

Navigation