Skip to main content

Advertisement

Log in

Truncation of the N-terminus of cardiac troponin I initiates adaptive remodeling of the myocardial proteosome via phosphorylation of mechano-sensitive signaling pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The cardiac isoform of troponin I has a unique N-terminal extension (~ 1–30 amino acids), which contributes to the modulation of cardiac contraction and relaxation. Hearts of various species including humans produce a truncated variant of cardiac troponin I (cTnI-ND) deleting the first ~ 30 amino acids as an adaption in pathophysiological conditions. In this study, we investigated the impact of cTnI-ND chronic expression in transgenic mouse hearts compared to wildtype (WT) controls (biological n = 8 in each group). We aimed to determine the global phosphorylation effects of cTnI-ND on the cardiac proteome, thereby determining the signaling pathways that have an impact on cardiac function. The samples were digested and isobarically labeled and equally mixed for relative quantification via nanoLC-MS/MS. The peptides were then enriched for phospho-peptides and bioinformatic analysis was done with Ingenuity Pathway Analysis (IPA). We found approximately 77% replacement of the endogenous intact cTnI with cTnI-ND in the transgenic mouse hearts with 1674 phospho-proteins and 2971 non-modified proteins. There were 73 significantly altered phospho-proteins; bioinformatic analysis identified the top canonical pathways as associated with integrin, protein kinase A, RhoA, and actin cytoskeleton signaling. Among the 73 phospho-proteins compared to controls cTnI-ND hearts demonstrated a significant decrease in paxillin and YAP1, which are known to play a role in cell mechano-sensing pathways. Our data indicate that cTnI-ND modifications in the sarcomere are sufficient to initiate changes in the phospho-signaling profile that may underly the chronic-adaptive response associated with cTnI cleavage in response to stressors by modifying mechano-sensitive signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are contained within the article, supplementary data, or available from the corresponding author R. John Solaro, email: solarorj@uic.edu. The raw mass spectrometry data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the MassIVE partner repository (https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp) with the dataset identifier MSV000087049.

References

  1. Yu ZB, Bao JX, Ma J, Zhang LF, Jin JP (2000) Changes in myocardial contractility and contractile proteins after four weeks of simulated [correction of simulate] weightlessness in rats. J Gravit Physiol 7:147–148

    Google Scholar 

  2. Yu ZB, Zhang LF, Jin JP (2001) A proteolytic NH2-terminal truncation of cardiac troponin I that is up-regulated in simulated microgravity. J Biol Chem 276:15753–15760. https://doi.org/10.1074/jbc.M011048200

    Article  CAS  PubMed  Google Scholar 

  3. Feng HZ, Chen M, Weinstein LS, Jin JP (2008) Removal of the N-terminal extension of cardiac troponin I as a functional compensation for impaired myocardial beta-adrenergic signaling. J Biol Chem 283:33384–33393. https://doi.org/10.1074/jbc.M803302200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Solaro RJ, Henze M, Kobayashi T (2013) Integration of troponin I phosphorylation with cardiac regulatory networks. Circ Res 112:355–366. https://doi.org/10.1161/CIRCRESAHA.112.268672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Solaro RJ, Moir AJ, Perry SV (1976) Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature 262:615–617

    Article  CAS  Google Scholar 

  6. Kachooei E, Cordina NM, Potluri PR, Guse JA, McCamey D, Brown LJ (2020) Phosphorylation of Troponin I finely controls the positioning of Troponin for the optimal regulation of cardiac muscle contraction. J Mol Cell Cardiol 150:44–53. https://doi.org/10.1016/j.yjmcc.2020.10.007

    Article  CAS  PubMed  Google Scholar 

  7. Barbato JC, Huang QQ, Hossain MM, Bond M, Jin JP (2005) Proteolytic N-terminal truncation of cardiac troponin I enhances ventricular diastolic function. J Biol Chem 280:6602–6609. https://doi.org/10.1074/jbc.M408525200

    Article  CAS  PubMed  Google Scholar 

  8. Salhi HE, Walton SD, Hassel NC, Brundage EA, de Tombe PP, Janssen PM, Davis JP, Biesiadecki BJ (2014) Cardiac troponin I tyrosine 26 phosphorylation decreases myofilament Ca2+ sensitivity and accelerates deactivation. J Mol Cell Cardiol 76:257–264. https://doi.org/10.1016/j.yjmcc.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  9. Biesiadecki BJ, Tachampa K, Yuan C, Jin JP, de Tombe PP, Solaro RJ (2010) Removal of the cardiac troponin I N-terminal extension improves cardiac function in aged mice. J Biol Chem 285:19688–19698. https://doi.org/10.1074/jbc.M109.086892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ryba DM, Warren CM, Karam CN, Davis RT 3rd, Chowdhury SAK, Alvarez MG, McCann M, Liew CW, Wieczorek DF, Varga P, Solaro RJ, Wolska BM (2019) Sphingosine-1-phosphate receptor modulator, FTY720, improves diastolic dysfunction and partially Reverses atrial remodeling in a Tm-E180G mouse model linked to hypertrophic cardiomyopathy. Circ Heart Fail 12:e005835. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Erickson BK, Jedrychowski MP, McAlister GC, Everley RA, Kunz R, Gygi SP (2015) Evaluating multiplexed quantitative phosphopeptide analysis on a hybrid quadrupole mass filter/linear ion trap/orbitrap mass spectrometer. Anal Chem 87:1241–1249. https://doi.org/10.1021/ac503934f

    Article  CAS  PubMed  Google Scholar 

  12. Kramer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30:523–530. https://doi.org/10.1093/bioinformatics/btt703

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Charles PY, Nan C, Pinto JR, Wang Y, Liang J, Wu G, Tian J, Feng HZ, Potter JD, Jin JP, Huang X (2010) Correcting diastolic dysfunction by Ca2+ desensitizing troponin in a transgenic mouse model of restrictive cardiomyopathy. J Mol Cell Cardiol 49:402–411. https://doi.org/10.1016/j.yjmcc.2010.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Solaro CR, Solaro RJ (2020) Implications of the complex biology and micro-environment of cardiac sarcomeres in the use of high affinity troponin antibodies as serum biomarkers for cardiac disorders. J Mol Cell Cardiol 143:145–158

    Article  CAS  Google Scholar 

  15. Pyle WG, Solaro RJ (2004) At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res 94:296–305. https://doi.org/10.1161/01.Res.0000116143.74830.A9

    Article  CAS  PubMed  Google Scholar 

  16. Solaro RJ (2005) Remote control of A-band cardiac thin filaments by the I-Z-I protein network of cardiac sarcomeres. Trends Cardiovasc Med 15:148–152. https://doi.org/10.1016/j.tcm.2005.04.007

    Article  CAS  PubMed  Google Scholar 

  17. Solis C, Solaro RJ (2021) Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol. https://doi.org/10.1085/jpg.202012777

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parker KK, Ingber DE (2007) Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos Trans R Soc Lond B 362:1267–1279. https://doi.org/10.1098/rstb.2007.2114

    Article  CAS  Google Scholar 

  19. Chen C, Li R, Ross RS, Manso AM (2016) Integrins and integrin-related proteins in cardiac fibrosis. J Mol Cell Cardiol 93:162–174. https://doi.org/10.1016/j.yjmcc.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  20. Sit B, Gutmann D, Iskratsch T (2019) Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil 40:197–209. https://doi.org/10.1007/s10974-019-09529-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Manso AM, Kang SM, Ross RS (2009) Integrins, focal adhesions, and cardiac fibroblasts. J Investig Med 57:856–860. https://doi.org/10.2310/JIM.0b013e3181c5e61f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Samarel AM (2014) Focal adhesion signaling in heart failure. Pflugers Arch 466:1101–1111. https://doi.org/10.1007/s00424-014-1456-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Willey CD, Balasubramanian S, Rodriguez Rosas MC, Ross RS, Kuppuswamy D (2003) Focal complex formation in adult cardiomyocytes is accompanied by the activation of beta3 integrin and c-Src. J Mol Cell Cardiol 35:671–683. https://doi.org/10.1016/s0022-2828(03)00112-3

    Article  CAS  PubMed  Google Scholar 

  24. Laser M, Willey CD, Jiang W, Gt C, Menick DR, Zile MR, Kuppuswamy D (2000) Integrin activation and focal complex formation in cardiac hypertrophy. J Biol Chem 275:35624–35630. https://doi.org/10.1074/jbc.M006124200

    Article  CAS  PubMed  Google Scholar 

  25. Kuppuswamy D, Kerr C, Narishige T, Kasi VS, Menick DR, Gt C (1997) Association of tyrosine-phosphorylated c-Src with the cytoskeleton of hypertrophying myocardium. J Biol Chem 272:4500–4508. https://doi.org/10.1074/jbc.272.7.4500

    Article  CAS  PubMed  Google Scholar 

  26. Franchini KG, Torsoni AS, Soares PH, Saad MJ (2000) Early activation of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overload in the rat heart. Circ Res 87:558–565. https://doi.org/10.1161/01.res.87.7.558

    Article  CAS  PubMed  Google Scholar 

  27. Frangogiannis NG (2019) Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 65:70–99. https://doi.org/10.1016/j.mam.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  28. Ruwhof C, Egas JM, van Wamel AE, van der Laarse A (2001) Signal transduction of mechanical stress in myocytes and fibroblasts derived from neonatal rat ventricles. Netherlands Heart J 9:372–378

    CAS  Google Scholar 

  29. Wang S, Gong H, Jiang G, Ye Y, Wu J, You J, Zhang G, Sun A, Komuro I, Ge J, Zou Y (2014) Src is required for mechanical stretch-induced cardiomyocyte hypertrophy through angiotensin II type 1 receptor-dependent β-arrestin2 pathways. PLoS ONE 9:e92926. https://doi.org/10.1371/journal.pone.0092926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu M, Bermea KC, Ayati M, Yang X, Fu Z, AmirHeravi, Zhang X, Na C, Everett A, Gabrielson K, Foster DB, Paolocci N, Murphy AM and Ramirez-Correa GA (2020) Altered tyrosine phosphorylation of cardiac proteins prompts contractile dysfunction in hypertrophic cardiomyopathy. Research Square

  31. Wang S, Englund E, Kjellman P, Li Z, Ahnlide JK, Rodriguez-Cupello C, Saggioro M, Kanzaki R, Pietras K, Lindgren D, Axelson H, Prinz CN, Swaminathan V, Madsen CD (2021) CCM3 is a gatekeeper in focal adhesions regulating mechanotransduction and YAP/TAZ signalling. Nat Cell Biol 23:758–770. https://doi.org/10.1038/s41556-021-00702-0

    Article  CAS  PubMed  Google Scholar 

  32. Aharonov A, Shakked A, Umansky KB, Savidor A, Genzelinakh A, Kain D, Lendengolts D, Revach OY, Morikawa Y, Dong J, Levin Y, Geiger B, Martin JF, Tzahor E (2020) ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat Cell Biol 22:1346–1356. https://doi.org/10.1038/s41556-020-00588-4

    Article  CAS  PubMed  Google Scholar 

  33. Dasgupta I, McCollum D (2019) Control of cellular responses to mechanical cues through YAP/TAZ regulation. J Biol Chem 294:17693–17706. https://doi.org/10.1074/jbc.REV119.007963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma S, Meng Z, Chen R, Guan KL (2019) The hippo pathway: biology and pathophysiology. Annu Rev Biochem 88:577–604. https://doi.org/10.1146/annurev-biochem-013118-111829

    Article  CAS  PubMed  Google Scholar 

  35. Byun J, Del Re DP, Zhai P, Ikeda S, Shirakabe A, Mizushima W, Miyamoto S, Brown JH, Sadoshima J (2019) Yes-associated protein (YAP) mediates adaptive cardiac hypertrophy in response to pressure overload. J Biol Chem 294:3603–3617. https://doi.org/10.1074/jbc.RA118.006123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamashiro Y, Thang BQ, Ramirez K, Shin SJ, Kohata T, Ohata S, Nguyen TAV, Ohtsuki S, Nagayama K, Yanagisawa H (2020) Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling. Proc Natl Acad Sci USA 117:9896–9905. https://doi.org/10.1073/pnas.1919702117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu FX, Zhang Y, Park HW, Jewell JL, Chen Q, Deng Y, Pan D, Taylor SS, Lai ZC, Guan KL (2013) Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 27:1223–1232. https://doi.org/10.1101/gad.219402.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boopathy GTK, Hong W (2019) Role of hippo pathway-YAP/TAZ signaling in angiogenesis. Front Cell Dev Biol 7:49. https://doi.org/10.3389/fcell.2019.00049

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alves ML, Dias FA, Gaffin RD, Simon JN, Montminy EM, Biesiadecki BJ, Hinken AC, Warren CM, Utter MS, Davis RT 3rd, Sadayappan S, Robbins J, Wieczorek DF, Solaro RJ, Wolska BM (2014) Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins. Circ Cardiovasc Genet 7:132–143. https://doi.org/10.1161/CIRCGENETICS.113.000324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Warren CM, Halas M, Feng HZ, Wolska BM, Jin JP, Solaro RJ (2021) NH2-terminal cleavage of cardiac troponin I signals adaptive response to cardiac stressors. J Cell Signal 2:162–171

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by NIH grants RO1 HL128468 (to BMW and RJS), PO1 HL062426 Project 1, 3, and Core C (to RJS, PPdT, CMW), and RO1 HL127691 (to JPJ, RJS, and PPdT). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

CMW contributed to writing of the original draft, writing, reviewing, & editing of the manuscript, methodology, investigation, validation, and formal analysis; MH contributed to investigation, formal analysis, and writing, reviewing, & editing of the manuscript; PHG contributed to writing of the original draft and writing, reviewing, & editing of the manuscript; HZF contributed to resources and writing, reviewing, & editing of the manuscript; AWH contributed to resources, formal analysis, and writing, reviewing, & editing of the manuscript; BMW contributed to writing, reviewing, & editing of the manuscript; PPdT contributed to writing, reviewing, & editing of the manuscript and funding acquisition. JPJ conceptualized and contributed to funding acquisition and writing, reviewing, & editing of the manuscript; RJS contributed to writing of the original draft, writing, reviewing, & editing of the manuscript, conceptualization, and funding acquisition.

Corresponding author

Correspondence to R. John Solaro.

Ethics declarations

Conflict of interest

R. John Solaro is a member of the Scientific Advisory Board of Cytokinetics, Inc., a consultant to Pfizer, Inc., and a member of the Heart Failure Advisory Board of Amgen. The authors declare no additional competing financial interests.

Ethical approval

This article contains studies with animals and all animal protocols were approved by the animal care and use committee of the University of Illinois at Chicago, which also conforms to the “Guide for the Care and Use of Laboratory Animals” published by the United States National Institutes of Health, 8th edition, revised 2011.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren, C.M., Halas, M., Goldspink, P.H. et al. Truncation of the N-terminus of cardiac troponin I initiates adaptive remodeling of the myocardial proteosome via phosphorylation of mechano-sensitive signaling pathways. Mol Cell Biochem 477, 1803–1815 (2022). https://doi.org/10.1007/s11010-022-04414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04414-3

Keywords

Navigation