Skip to main content
Log in

Atrial fibrillation: the role of hypoxia-inducible factor-1-regulated cytokines

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is a common arrhythmia that has major morbidity and mortality. Hypoxia plays an important role in AF initiation and maintenance. Hypoxia-inducible factor (HIF), the master regulator of oxygen homeostasis in cells, plays a fundamental role in the regulation of multiple chemokines and cytokines that are involved in different physiological and pathophysiological pathways. HIF is also involved in the pathophysiology of AF induction and propagation mostly through structural remodeling such as fibrosis; however, some of the cytokines discussed have even been implicated in electrical remodeling of the atria. In this article, we highlight the association between HIF and some of its related cytokines with AF. Additionally, we provide an overview of the potential diagnostic benefits of using the mentioned cytokines as AF biomarkers. Research discussed in this review suggests that the expression of these cytokines may correlate with patients who are at an increased risk of developing AF. Furthermore, cytokines that are elevated in patients with AF can assist clinicians in the diagnosis of suspect paroxysmal AF patients. Interestingly, some of the cytokines have been elevated specifically when AF is associated with a hypercoagulable state, suggesting that they could be helpful in the clinician’s and patient’s decision to begin anticoagulation. Finally, more recent research has demonstrated the promise of targeting these cytokines for the treatment of AF. While still in its early stages, tools such as neutralizing antibodies have proved to be efficacious in targeting the HIF pathway and treating or preventing AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patel NJ, Deshmukh A, Pant S et al (2014) Contemporary trends of hospitalization for atrial fibrillation in the United States, 2000 Through 2010. Circulation 129:2371–2379. https://doi.org/10.1161/circulationaha.114.008201

    Article  PubMed  Google Scholar 

  2. Nattel S, Harada M (2014) Atrial remodeling and atrial fibrillation. J Am Coll Cardiol 63:2335–2345. https://doi.org/10.1016/j.jacc.2014.02.555

    Article  PubMed  Google Scholar 

  3. Wakili R, Voigt N, Kääb S et al (2011) Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Investig 121:2955–2968

    Article  CAS  Google Scholar 

  4. Nattel S, Dobrev D (2012) The multidimensional role of calcium in atrial fibrillation pathophysiology: mechanistic insights and therapeutic opportunities. Eur Heart J 33:1870–1877

    Article  CAS  Google Scholar 

  5. Shinagawa K, Shi Y-F, Tardif J-C et al (2002) Dynamic nature of atrial fibrillation substrate during development and reversal of heart failure in dogs. Circulation 105:2672–2678. https://doi.org/10.1161/01.cir.0000016826.62813.f5

    Article  PubMed  Google Scholar 

  6. Pei J-M, Kravtsov GM, Wu S et al (2003) Calcium homeostasis in rat cardiomyocytes during chronic hypoxia: a time course study. Am J Physiol Physiol 285:C1420–C1428. https://doi.org/10.1152/ajpcell.00534.2002

    Article  CAS  Google Scholar 

  7. Gemel J, Su Z, Gileles-Hillel A et al (2017) Intermittent hypoxia causes NOX2-dependent remodeling of atrial connexins. BMC Cell Biol 18:7. https://doi.org/10.1186/s12860-016-0117-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su F, Zhang W, Chen Y et al (2014) Significance of hypoxia-inducible factor-1α expression with atrial fibrosis in rats induced with isoproterenol. Exp Ther Med 8:1677–1682. https://doi.org/10.3892/etm.2014.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dimitri H, Ng M, Brooks AG et al (2012) Atrial remodeling in obstructive sleep apnea: implications for atrial fibrillation. Heart Rhythm 9:321–327. https://doi.org/10.1016/j.hrthm.2011.10.017

    Article  PubMed  Google Scholar 

  10. White CW, Kerber RE, Weiss HR, Marcus ML (1982) The effects of atrial fibrillation on atrial pressure-volume and flow relationships. Circ Res 51:205–215. https://doi.org/10.1161/01.res.51.2.205

    Article  CAS  PubMed  Google Scholar 

  11. Lammers WJ, Kirchhof C, Bonke FI, Allessie MA (1992) Vulnerability of rabbit atrium to reentry by hypoxia. Role of inhomogeneity in conduction and wavelength. Am J Physiol Circ Physiol 262:H47–H55. https://doi.org/10.1152/ajpheart.1992.262.1.h47

    Article  CAS  Google Scholar 

  12. Todd K, McIntyre WF, Baranchuk A (2010) Obstructive sleep apnea and atrial fibrillation. Nat Sci Sleep 2:39–45. https://doi.org/10.2147/nss.s7625

    Article  PubMed  PubMed Central  Google Scholar 

  13. Channaveerappa D, Lux JC, Wormwood KL et al (2017) Atrial electrophysiological and molecular remodelling induced by obstructive sleep apnoea. J Cell Mol Med 21:2223–2235. https://doi.org/10.1111/jcmm.13145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gramley F, Lorenzen J, Pezzella F et al (2009) Hypoxia and myocardial remodeling in human cardiac allografts: a time-course study. J Heart Lung Transplant 28:1119–1126. https://doi.org/10.1016/j.healun.2009.05.038

    Article  PubMed  Google Scholar 

  15. Colucci WS (1987) Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 80:15L–25L. https://doi.org/10.1016/s0002-9149(97)00845-x

    Article  Google Scholar 

  16. De BR, Pinto Y, Van VD (2003) The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities. Microcirculation 10:113–126. https://doi.org/10.1080/713773607

    Article  Google Scholar 

  17. Sinno H, Derakhchan K, Libersan D et al (2003) Atrial ischemia promotes atrial fibrillation in dogs. Circulation 107:1930–1936. https://doi.org/10.1161/01.cir.0000058743.15215.03

    Article  PubMed  Google Scholar 

  18. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007:cm8–cm8. https://doi.org/10.1126/stke.4072007cm8

    Article  PubMed  Google Scholar 

  19. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408. https://doi.org/10.1016/j.cell.2012.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Semenza GL (2014) Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol 76:39–56. https://doi.org/10.1146/annurev-physiol-021113-170322

    Article  CAS  PubMed  Google Scholar 

  21. Thijssen VL, Van der Velden HM, Van Ankeren EP (2002) Analysis of altered gene expression during sustained atrial fibrillation in the goat. Cardiovasc Res 54:427–437. https://doi.org/10.1016/s0008-6363(02)00260-2

    Article  CAS  PubMed  Google Scholar 

  22. Gramley F, Lorenzen J, Jedamzik B et al (2010) Atrial fibrillation is associated with cardiac hypoxia. Cardiovasc Pathol 19:102–111. https://doi.org/10.1016/j.carpath.2008.11.001

    Article  PubMed  Google Scholar 

  23. Martinez C-A, Kerr B, Jin C et al (2019) Obstructive sleep apnea activates HIF-1 in a hypoxia dose-dependent manner in HCT116 colorectal carcinoma cells. Int J Mol Sci 20:445. https://doi.org/10.3390/ijms20020445

    Article  CAS  PubMed Central  Google Scholar 

  24. Ogi H, Nakano Y, Niida S et al (2010) Is structural remodeling of fibrillated atria the consequence of tissue hypoxia? Circ J 74:1815–1821. https://doi.org/10.1253/circj.cj-09-0969

    Article  CAS  PubMed  Google Scholar 

  25. Abe I, Teshima Y, Kondo H et al (2018) Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation. Heart Rhythm 15:1717–1727. https://doi.org/10.1016/j.hrthm.2018.06.025

    Article  PubMed  Google Scholar 

  26. Xu Y, Sharma D, Du F, Liu Y (2013) The role of Toll-like receptor 2 and hypoxia-induced transcription factor-1α in the atrial structural remodeling of non-valvular atrial fibrillation. Int J Cardiol 168:2940–2941. https://doi.org/10.1016/j.ijcard.2013.03.174

    Article  PubMed  Google Scholar 

  27. Dengler VL, Galbraith MD, Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49:1–15. https://doi.org/10.3109/10409238.2013.838205

    Article  CAS  PubMed  Google Scholar 

  28. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732. https://doi.org/10.1038/nrc1187

    Article  CAS  PubMed  Google Scholar 

  29. Ferrara N, Houck K, Jakeman LY, Leung DW (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13:18–32. https://doi.org/10.1210/edrv-13-1-18

    Article  CAS  PubMed  Google Scholar 

  30. Stuttfeld E, Ballmer-Hofer K (2009) Structure and function of VEGF receptors. IUBMB Life 61:915–922. https://doi.org/10.1002/iub.234

    Article  CAS  PubMed  Google Scholar 

  31. Forsythe JA, Jiang BH, Iyer NV et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613. https://doi.org/10.1128/mcb.16.9.4604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berntsson J, Smith JG, Johnson LSB et al (2019) Increased vascular endothelial growth factor D is associated with atrial fibrillation and ischaemic stroke. Heart 105:553–558. https://doi.org/10.1136/heartjnl-2018-313684

    Article  CAS  PubMed  Google Scholar 

  33. Iwasaki Y, Yamashita T, Sekiguchi A et al (2016) Importance of pulmonary vein preferential fibrosis for atrial fibrillation promotion in hypertensive rat hearts. Can J Cardiol 32:767–776. https://doi.org/10.1016/j.cjca.2015.09.006

    Article  PubMed  Google Scholar 

  34. Yao C, Veleva T, Scott L et al (2018) Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation 138:2227–2242. https://doi.org/10.1161/circulationaha.118.035202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li J, Solus J, Chen Q et al (2010) Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm 7:438–444. https://doi.org/10.1016/j.hrthm.2009.12.009

    Article  PubMed  Google Scholar 

  36. Scridon A, Morel E, Nonin-Babary E et al (2012) Increased intracardiac vascular endothelial growth factor levels in patients with paroxysmal, but not persistent atrial fibrillation. Europace 14:948–953. https://doi.org/10.1093/europace/eur418

    Article  PubMed  Google Scholar 

  37. Kim CH, Cho YS, Chun YS et al (2002) Early expression of myocardial HIF-1α in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res. https://doi.org/10.1161/hh0202.104923

    Article  PubMed  Google Scholar 

  38. Li J, Hampton T, Morgan JP, Simons M (1997) Stretch-induced VEGF expression in the heart. J Clin Investig 100:18–24. https://doi.org/10.1172/JCI119510

    Article  CAS  PubMed  Google Scholar 

  39. Seko Y, Seko Y, Takahashi N et al (1999) Pulsatile stretch stimulates vascular endothelial growth factor (VEGF) secretion by cultured rat cardiac myocytes. Biochem Biophys Res Commun 254:462–465. https://doi.org/10.1006/bbrc.1998.9969

    Article  CAS  PubMed  Google Scholar 

  40. Seko Y, Nishimura H, Takahashi N et al (2000) Serum levels of vascular endothelial growth factor and transforming growth factor-b1 in patients with atrial fibrillation undergoing defibrillation therapy. Jpn Heart J 41:27–32. https://doi.org/10.1536/jhj.41.27

    Article  CAS  PubMed  Google Scholar 

  41. Jong AM, Maass AH, Oberdorf-Maass SU et al (2013) Cyclical stretch induces structural changes in atrial myocytes. J Cell Mol Med 17:743–753. https://doi.org/10.1111/jcmm.12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Granier M, Massin F, Pasquie J-L (2013) Pro- and anti-arrhythmic effects of anti-inflammatory drugs. Anti-Inflamm Antiallergy Agents Med Chem 12:83–93. https://doi.org/10.2174/1871523011312010010

    Article  CAS  Google Scholar 

  43. Serban RC, Balan AI, Perian M (2019) Atrial electrical remodeling induced by chronic ischemia and inflammation in patients with stable coronary artery disease. Chin J Physiol 62(1):11–16. https://doi.org/10.4103/CJP.CJP_2_19

    Article  CAS  PubMed  Google Scholar 

  44. Mezache L, Struckman H, Greer-Short A et al (2019) Vegf-induced vascular leak promotes atrial fibrillation by disrupting intercalated disc nanodomains. Biophys J 116:32a. https://doi.org/10.1016/j.bpj.2018.11.212

    Article  Google Scholar 

  45. Choudhury A, Freestone B, Patel J, Lip GYH (2007) Relationship of soluble CD40 ligand to vascular endothelial growth factor, angiopoietins, and tissue factor in atrial fibrillation. Chest 132:1913–1919. https://doi.org/10.1378/chest.07-1565

    Article  CAS  PubMed  Google Scholar 

  46. Chung NAY, Belgore F, Li-Saw-Hee FL et al (2002) Is the hypercoagulable state in atrial fibrillation mediated by vascular endothelial growth factor? Stroke 33:2187–2191. https://doi.org/10.1161/01.str.0000023889.84649.3d

    Article  CAS  PubMed  Google Scholar 

  47. Freestone B, Chong AY, Lim HS et al (2005) Angiogenic factors in atrial fibrillation: a possible role in thrombogenesis? Ann Med 37:365–372. https://doi.org/10.1080/07853890510037392

    Article  CAS  PubMed  Google Scholar 

  48. Ghosh AK, Vaughan DE (2012) PAI-1 in tissue fibrosis. J Cell Physiol 227:493–507. https://doi.org/10.1002/jcp.22783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kietzmann T, Jungermann K, Görlach A (2003) Regulation of the hypoxia-dependent plasminogen activator inhibitor 1 expression by MAP kinases. Thromb Haemost 89(4):666–673. https://doi.org/10.1055/s-0037-1613573

    Article  CAS  PubMed  Google Scholar 

  50. Carroll VA, Ashcroft M (2006) Role of hypoxia-inducible factor (HIF)-1α versus HIF-2α in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 66:6264–6270. https://doi.org/10.1158/0008-5472.can-05-2519

    Article  CAS  PubMed  Google Scholar 

  51. De WRR, Marcos EG, Dudink EAMP et al (2019) Atrial fibrillation progression risk factors and associated cardiovascular outcome in well-phenotyped patients: data from the AF-RISK study. Europace 22:352–360. https://doi.org/10.1093/europace/euz339

    Article  Google Scholar 

  52. Negreva M, Georgiev S, Vitlianova K (2016) Early effects of paroxysmal atrial fibrillation on plasma markers of fibrinolysis. Medicine (Baltimore) 95:e5184–e5184. https://doi.org/10.1097/MD.0000000000005184

    Article  CAS  Google Scholar 

  53. Gramley F, Lorenzen J, Plisiene J et al (2007) Decreased plasminogen activator inhibitor and tissue metalloproteinase inhibitor expression may promote increased metalloproteinase activity with increasing duration of human atrial fibrillation. J Cardiovasc Electrophysiol 18:1076–1082. https://doi.org/10.1111/j.1540-8167.2007.00906.x

    Article  PubMed  Google Scholar 

  54. Pretorius M, Donahue BS, Yu C et al (2007) Plasminogen activator inhibitor-1 as a predictor of postoperative atrial fibrillation after cardiopulmonary bypass. Circulation 116:I-1–I-7. https://doi.org/10.1161/circulationaha.106.677906

    Article  CAS  Google Scholar 

  55. Tveit A, Seljeflot I, Grundvold I et al (2008) Levels of PAI-1 and outcome after electrical cardioversion for atrial fibrillation. Thromb Res 121:447–453. https://doi.org/10.1016/j.thromres.2007.06.014

    Article  CAS  PubMed  Google Scholar 

  56. Mulder BA, Geelhoed B, van der Harst P et al (2018) Plasminogen activator inhibitor-1 and tissue plasminogen activator and incident AF: data from the PREVEND study. Int J Cardiol 272:208–210. https://doi.org/10.1016/j.ijcard.2018.08.029

    Article  PubMed  Google Scholar 

  57. Mondillo S, Sabatini L, Agricola E et al (2000) Correlation between left atrial size, prothrombotic state and markers of endothelial dysfunction in patients with lone chronic nonrheumatic atrial fibrillation. Int J Cardiol 75:227–232. https://doi.org/10.1016/s0167-5273(00)00336-3

    Article  CAS  PubMed  Google Scholar 

  58. Otto A, Fareed J, Liles J et al (2018) Fibrinolytic deficit and platelet activation in atrial fibrillation and their postablation modulation. Clin Appl Thromb Hemost 24:803–807. https://doi.org/10.1177/1076029617750270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liles J, Liles J, Wanderling C et al (2016) Increased level of thrombotic biomarkers in patients with atrial fibrillation despite traditional and new anticoagulant therapy. Clin Appl Thromb Hemost 22:743–748. https://doi.org/10.1177/1076029616648407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berge T, Ulimoen SR, Enger S et al (2013) Impact of atrial fibrillation on inflammatory and fibrinolytic variables in the elderly. Scand J Clin Lab Investig 73:326–333. https://doi.org/10.3109/00365513.2013.780093

    Article  CAS  Google Scholar 

  61. Han W, Li WM, Song LY et al (2005) The experimental study on changes of endothelial nitric oxide synthase and plasminogen activator inhibitor-1 protein in the canine atrial fibrillation model. Zhonghua xin xue guan bing za zhi 33(1):69–72

    CAS  PubMed  Google Scholar 

  62. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312. https://doi.org/10.1101/gad.1653708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schultz K, Fanburg BL, Beasley D (2006) Hypoxia and hypoxia-inducible factor-1α promote growth factor-induced proliferation of human vascular smooth muscle cells. Am J Physiol Circ Physiol 290:H2528–H2534. https://doi.org/10.1152/ajpheart.01077.2005

    Article  CAS  Google Scholar 

  64. Chen Y, Surinkaew S, Naud P et al (2017) JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate. Cardiovasc Res 113:310–320. https://doi.org/10.1093/cvr/cvx004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pontén A, Folestad EB, Pietras K, Eriksson U (2005) Platelet-derived growth factor D induces cardiac fibrosis and proliferation of vascular smooth muscle cells in heart-specific transgenic mice. Circ Res 97:1036–1045. https://doi.org/10.1161/01.res.0000190590.31545.d4

    Article  PubMed  Google Scholar 

  66. Pontén A, Li X, Thorén P et al (2003) Transgenic overexpression of platelet-derived growth factor-C in the mouse heart induces cardiac fibrosis, hypertrophy, and dilated cardiomyopathy. Am J Pathol 163:673–682. https://doi.org/10.1016/S0002-9440(10)63694-2

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tuuminen R, Nykänen AI, Krebs R et al (2009) PDGF-A, -C, and -D but not PDGF-B increase TGF-β1 and chronic rejection in rat cardiac allografts. Arterioscler Thromb Vasc Biol 29:691–698. https://doi.org/10.1161/atvbaha.108.178558

    Article  CAS  PubMed  Google Scholar 

  68. Yang D, Yuan J, Liu G et al (2013) Angiotensin receptor blockers and statins could alleviate atrial fibrosis via regulating platelet-derived growth factor/Rac1/nuclear factor-kappa B axis. Int J Med Sci 10:812–824. https://doi.org/10.7150/ijms.5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Babapoor-Farrokhran S, Rasekhi RT, Gill D et al (2020) How transforming growth factor contributes to atrial fibrillation? Life Sci 266:118823. https://doi.org/10.1016/j.lfs.2020.118823

    Article  CAS  PubMed  Google Scholar 

  70. Jiang Z, Zhong G, Wen L et al (2016) The role of platelet-derived growth factor-B/platelet-derived growth factor receptor-β signaling in chronic atrial fibrillation. Cardiology 133:242–256. https://doi.org/10.1159/000442940

    Article  CAS  PubMed  Google Scholar 

  71. Fiset C (2013) Platelet-derived growth factor: a promising therapeutic target for atrial fibrillation. Heart Rhythm 10:1052–1053. https://doi.org/10.1016/j.hrthm.2013.04.003

    Article  PubMed  Google Scholar 

  72. Musa H, Kaur K, O’Connell R et al (2013) Inhibition of platelet-derived growth factor-AB signaling prevents electromechanical remodeling of adult atrial myocytes that contact myofibroblasts. Heart Rhythm 10:1044–1051. https://doi.org/10.1016/j.hrthm.2013.03.014

    Article  PubMed  PubMed Central  Google Scholar 

  73. Feldser D, Agani F, Iyer NV et al (1999) Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 59(16):3915–3918

    CAS  PubMed  Google Scholar 

  74. Lee W-S, Kim J (2018) Insulin-like growth factor-1 signaling in cardiac aging. Biochim Biophys Acta Mol Basis Dis 1864:1931–1938. https://doi.org/10.1016/j.bbadis.2017.08.029

    Article  CAS  PubMed  Google Scholar 

  75. Busch M, Krüger A, Gross S et al (2019) Relation of IGF-1 and IGFBP-3 with prevalent and incident atrial fibrillation in a population-based study. Heart Rhythm 16:1314–1319. https://doi.org/10.1016/j.hrthm.2019.03.017

    Article  PubMed  Google Scholar 

  76. Polovina M, Lip G, Potpara T (2014) Endothelial (dys)function in lone atrial fibrillation. Curr Pharm Des 21:622–645. https://doi.org/10.2174/1381612820666140825143028

    Article  CAS  Google Scholar 

  77. Troncoso R, Ibarra C, Vicencio JM et al (2014) New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab 25:128–137. https://doi.org/10.1016/j.tem.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  78. Ittermann T, van Noord C, Friedrich N et al (2012) The association between insulin-like growth factor-I and cardiac repolarization. Growth Horm IGF Res 22:1–5. https://doi.org/10.1016/j.ghir.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  79. González-Guerra JL, Castilla-Cortazar I, Aguirre GA et al (2017) Partial IGF-1 deficiency is sufficient to reduce heart contractibility, angiotensin II sensibility, and alter gene expression of structural and functional cardiac proteins. PLoS One 12:e0181760–e0181760. https://doi.org/10.1371/journal.pone.0181760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang J, Li Z, Du J et al (2019) The expression profile analysis of atrial mRNA in rats with atrial fibrillation: the role of IGF1 in atrial fibrosis. BMC Cardiovasc Disord 19:40. https://doi.org/10.1186/s12872-019-1013-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Babapoor-Farrokhran S, Gill D, Rasekhi RT (2020) The role of long noncoding RNAs in atrial fibrillation. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2020.01.015

    Article  PubMed  Google Scholar 

  82. Sirish P, Li N, Timofeyev V et al (2016) Molecular mechanisms and new treatment paradigm for atrial fibrillation. Circ Arrhythm Electrophysiol. https://doi.org/10.1161/CIRCEP.115.003721e003721.10.1161/CIRCEP.115.003721

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wang K, Liu Y, Huang S et al (2019) Does an imbalance in circulating vascular endothelial growth factors (VEGFs) cause atrial fibrillation in patients with valvular heart disease? J Thorac Dis 11:5509–5516. https://doi.org/10.21037/jtd.2019.11.32

    Article  PubMed  PubMed Central  Google Scholar 

  84. Woitek F, Zentilin L, Hoffman NE et al (2015) Intracoronary cytoprotective gene therapy. J Am Coll Cardiol 66:139–153. https://doi.org/10.1016/j.jacc.2015.04.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pepe M, Mamdani M, Zentilin L et al (2010) Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res 106:1893–1903. https://doi.org/10.1161/CIRCRESAHA.110.220855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tofler GH, Massaro J, O’Donnell CJ et al (2016) Plasminogen activator inhibitor and the risk of cardiovascular disease: the Framingham Heart Study. Thromb Res 140:30–35. https://doi.org/10.1016/j.thromres.2016.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to our colleagues, who contributed invaluable clinical information.

Funding

This research did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savalan Babapoor-Farrokhran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babapoor-Farrokhran, S., Gill, D., Alzubi, J. et al. Atrial fibrillation: the role of hypoxia-inducible factor-1-regulated cytokines. Mol Cell Biochem 476, 2283–2293 (2021). https://doi.org/10.1007/s11010-021-04082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04082-9

Keywords

Navigation