Skip to main content
Log in

Ticagrelor reverses the mitochondrial dysfunction through preventing accumulated autophagosomes-dependent apoptosis and ER stress in insulin-resistant H9c2 myocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ticagrelor, a P2Y12-receptor inhibitor, and a non-thienopyridine agent are used to treat diabetic patients via its effects on off-target mechanisms. However, the exact sub-cellular mechanisms by which ticagrelor exerts those effects remains to be elucidated. Accordingly, the present study aimed to examine whether ticagrelor influences directly the cardiomyocytes function under insulin resistance through affecting mitochondria-sarco(endo)plasmic reticulum (SER) cross-talk. Therefore, we analyzed the function and ultrastructure of mitochondria and SER in insulin resistance-mimicked (50-μM palmitic acid for 24-h) H9c2 cardiomyocytes in the presence or absence of ticagrelor (1-µM for 24-h). We found that ticagrelor treatment significantly prevented depolarization of mitochondrial membrane potential and increases in reactive oxygen species with a marked increase in the ATP level in insulin-resistant H9c2 cells. Ticagrelor treatment also reversed the increases in the resting level of free Ca2+ and mRNA level of P2Y12 receptors as well as preserved ER stress and apoptosis in insulin-resistant H9c2 cells. Furthermore, we determined marked repression with ticagrelor treatment in the increased number of autophagosomes and degeneration of mitochondrion, including swelling and loss of crista besides recoveries in enlargement and irregularity seen in SER in insulin-resistant H9c2 cells. Moreover, ticagrelor treatment could prevent the altered mRNA levels of Becklin-1 and type 1 equilibrative nucleoside transporter (ENT1), which are parallel to the preservation of ultrastructural ones. Our overall data demonstrated that ticagrelor can directly affect cardiomyocytes and provide marked protection against ER stress and dramatic induction of autophagosomes, and therefore, can alleviate the ER stress-induced oxidative stress increase and cell apoptosis during insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Davidson SM, Andreadou I, Garcia-Dorado D, Hausenloy DJ (2019) Shining the spotlight on cardioprotection: beyond the cardiomyocyte. Cardiovasc Res 115:1115–1116. https://doi.org/10.1093/cvr/cvz072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Serne EH, de Jongh RT, Eringa EC, IJzerman RG, Stehouwer CD (2007) Microvascular dysfunction: a potential pathophysiological role in the metabolic syndrome. Hypertension 50:204–211. https://doi.org/10.1161/HYPERTENSIONAHA.107.089680

    Article  CAS  PubMed  Google Scholar 

  3. Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJ, Swedberg KB, Ostergren J, Michelson EL, Pieper KS, Granger CB (2006) Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J 27:65–75. https://doi.org/10.1093/eurheartj/ehi555

    Article  PubMed  Google Scholar 

  4. Aguilar D, Bozkurt B, Ramasubbu K, Deswal A (2009) Relationship of hemoglobin A1C and mortality in heart failure patients with diabetes. J Am Coll Cardiol 54:422–428. https://doi.org/10.1016/j.jacc.2009.04.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Riehle C, Abel ED (2016) Insulin Signaling and Heart Failure. Circ Res 118:1151–1169. https://doi.org/10.1161/circresaha.116.306206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arora GP, Thaman RG, Prasad RB, Almgren P, Brons C, Groop LC, Vaag AA (2015) Prevalence and risk factors of gestational diabetes in Punjab, North India: results from a population screening program. Eur J Endocrinol 173:257–267. https://doi.org/10.1530/eje-14-0428

    Article  CAS  PubMed  Google Scholar 

  7. Kahn R, Buse J, Ferrannini E, Stern M (2005) The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 28:2289–2304. https://doi.org/10.2337/diacare.28.9.2289

    Article  PubMed  Google Scholar 

  8. Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365:1415–1428. https://doi.org/10.1016/s0140-6736(05)66378-7

    Article  CAS  PubMed  Google Scholar 

  9. Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH (2008) The metabolic syndrome. Endocr Rev 29:777–822. https://doi.org/10.1210/er.2008-0024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lorenz K, Stathopoulou K, Schmid E, Eder P, Cuello F (2014) Heart failure-specific changes in protein kinase signalling. Pflugers Arch 466:1151–1162. https://doi.org/10.1007/s00424-014-1462-x

    Article  CAS  PubMed  Google Scholar 

  11. Abel ED, Litwin SE, Sweeney G (2008) Cardiac remodeling in obesity. Physiol Rev 88:389–419. https://doi.org/10.1152/physrev.00017.2007

    Article  CAS  PubMed  Google Scholar 

  12. Befroy DE, Petersen KF, Dufour S, Mason GF, de Graaf RA, Rothman DL, Shulman GI (2007) Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 56:1376–1381. https://doi.org/10.2337/db06-0783

    Article  CAS  PubMed  Google Scholar 

  13. Nisoli E, Clementi E, Carruba MO, Moncada S (2007) Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res 100:795–806. https://doi.org/10.1161/01.RES.0000259591.97107.6c

    Article  CAS  PubMed  Google Scholar 

  14. Kim JA, Wei Y, Sowers JR (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102:401–414. https://doi.org/10.1161/circresaha.107.165472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rask-Madsen C, King GL (2013) Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab 17:20–33. https://doi.org/10.1016/j.cmet.2012.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sweeny JM, Angiolillo DJ, Franchi F, Rollini F, Waksman R, Raveendran G, Dangas G, Khan ND, Carlson GF, Zhao Y, Teng R, Mehran R (2017) Impact of diabetes mellitus on the pharmacodynamic effects of ticagrelor versus clopidogrel in troponin-negative acute coronary syndrome patients undergoing ad hoc percutaneous coronary intervention. J Am Heart Assoc. https://doi.org/10.1161/jaha.117.005650

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang H, Tang B, Xu CH, Ahmed A (2019) Ticagrelor versus prasugrel for the treatment of patients with Type 2 diabetes mellitus following percutaneous coronary intervention: a systematic review and meta-analysis. Diabetes Ther 10:81–93. https://doi.org/10.1007/s13300-018-0537-7

    Article  PubMed  Google Scholar 

  18. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, Gencer B, Hasenfuss G, Kjeldsen K, Lancellotti P, Landmesser U, Mehilli J, Mukherjee D, Storey RF, Windecker S (2016) 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). G Ital Cardiol (Rome) 17:831–872. https://doi.org/10.1714/2464.25804

    Article  Google Scholar 

  19. Nylander S, Schulz R (2016) Effects of P2Y12 receptor antagonists beyond platelet inhibition–comparison of ticagrelor with thienopyridines. Br J Pharmacol 173:1163–1178. https://doi.org/10.1111/bph.13429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Armstrong D, Summers C, Ewart L, Nylander S, Sidaway JE, van Giezen JJ (2014) Characterization of the adenosine pharmacology of ticagrelor reveals therapeutically relevant inhibition of equilibrative nucleoside transporter 1. J Cardiovasc Pharmacol Ther 19:209–219. https://doi.org/10.1177/1074248413511693

    Article  CAS  PubMed  Google Scholar 

  21. Park Y, Choi SW, Oh JH, Shin ES, Lee SY, Kim J, Kim W, Suh JW, Yang DH, Hong YJ, Chan MY, Koh JS, Hwang JY, Park JH, Jeong YH (2019) Rationale and design of the high platelet inhibition with ticagrelor to improve left ventricular remodeling in patients with ST-segment elevation myocardial infarction (HEALING-AMI) Trial. Korean Circ J 49:586–599. https://doi.org/10.4070/kcj.2018.0415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akerblom A, Wojdyla DM, Wallentin L, James SK, de Souza BF, Steg PG, Cannon CP, Katus HA, Himmelmann A, Storey RF, Becker RC, Lopes RD (2019) Ticagrelor in patients with heart failure after acute coronary syndromes-Insights from the PLATelet inhibition and patient Outcomes (PLATO) trial. Am Heart J 213:57–65. https://doi.org/10.1016/j.ahj.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  23. Chatzizisis YS, Stefanadis C (2018) Clash of oral P2Y12 receptor inhibitors in acute coronary syndromes. J Am Coll Cardiol 71:382–385. https://doi.org/10.1016/j.jacc.2017.12.004

    Article  PubMed  Google Scholar 

  24. Vilahur G, Gutierrez M, Casani L, Lambert C, Mendieta G, Ben-Aicha S, Capdevila A, Pons-Llado G, Carreras F, Carlsson L, Hidalgo A, Badimon L (2018) P2Y12 antagonists and cardiac repair post-myocardial infarction: global and regional heart function analysis and molecular assessments in pigs. Cardiovasc Res 114:1860–1870. https://doi.org/10.1093/cvr/cvy201

    Article  CAS  PubMed  Google Scholar 

  25. Liu Z, Xiang Q, Mu G, Xie Q, Zhou S, Wang Z, Chen S, Hu K, Gong Y, Jiang J, Cui Y (2019) Effectiveness and safety of platelet ADP-P2Y12 receptor inhibitors influenced by smoking status: a systematic review and meta-analysis. J Am Heart Assoc 8:e010889. https://doi.org/10.1161/jaha.118.010889

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chanoit G, Lee S, Xi J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z (2008) Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta. Am J Physiol Heart Circ Physiol 295:H1227–h1233. https://doi.org/10.1152/ajpheart.00610.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okatan EN, Olgar Y, Tuncay E, Turan B (2019) Azoramide improves mitochondrial dysfunction in palmitate-induced insulin resistant H9c2 cells. Mol Cell Biochem 461:65–72. https://doi.org/10.1007/s11010-019-03590-z

    Article  CAS  PubMed  Google Scholar 

  28. Billur D, Tuncay E, Okatan EN, Olgar Y, Durak AT, Degirmenci S, Can B, Turan B (2016) Interplay between cytosolic free Zn(2+) and mitochondrion morphological changes in rat ventricular cardiomyocytes. Biol Trace Elem Res 174:177–188. https://doi.org/10.1007/s12011-016-0704-5

    Article  CAS  PubMed  Google Scholar 

  29. Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A (2016) Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: a scientific statement from the American Heart Association. Circ Res 119:e39–75. https://doi.org/10.1161/res.0000000000000110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Degirmenci S, Olgar Y, Durak A, Tuncay E, Turan B (2018) Cytosolic increased labile Zn(2+) contributes to arrhythmogenic action potentials in left ventricular cardiomyocytes through protein thiol oxidation and cellular ATP depletion. J Trace Elem Med Biol 48:202–212. https://doi.org/10.1016/j.jtemb.2018.04.014

    Article  CAS  PubMed  Google Scholar 

  31. Turan B, Desilets M, Acan LN, Hotomaroglu O, Vannier C, Vassort G (1996) Oxidative effects of selenite on rat ventricular contractility and Ca movements. Cardiovasc Res 32:351–361. https://doi.org/10.1016/0008-6363(96)00071-5

    Article  CAS  PubMed  Google Scholar 

  32. Tuncay E, Bitirim VC, Durak A, Carrat GRJ, Taylor KM, Rutter GA, Turan B (2017) Hyperglycemia-induced changes in ZIP7 and ZnT7 expression cause Zn(2+) release from the sarco(endo)plasmic reticulum and mediate ER stress in the heart. Diabetes 66:1346–1358. https://doi.org/10.2337/db16-1099

    Article  CAS  PubMed  Google Scholar 

  33. Durak A, Olgar Y, Degirmenci S, Akkus E, Tuncay E, Turan B (2018) A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol 17:144. https://doi.org/10.1186/s12933-018-0790-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laine M, Frere C, Toesca R, Berbis J, Barnay P, Pansieri M, Michelet P, Bessereau J, Camilleri E, Ronsin O, Helal O, Paganelli F, Dignat-George F, Bonello L (2014) Ticagrelor versus prasugrel in diabetic patients with an acute coronary syndrome. A pharmacodynamic randomised study. Thromb Haemost 111:273–278. https://doi.org/10.1160/th13-05-0384

    Article  CAS  PubMed  Google Scholar 

  35. Smith JP, Haddad EV, Taylor MB, Oram D, Blakemore D, Chen Q, Boutaud O, Oates JA (2012) Suboptimal inhibition of platelet cyclooxygenase-1 by aspirin in metabolic syndrome. Hypertension 59:719–725. https://doi.org/10.1161/hypertensionaha.111.181404

    Article  CAS  PubMed  Google Scholar 

  36. Birnbaum Y, Tran D, Chen H, Nylander S, Sampaio LC, Ye Y (2019) Ticagrelor improves remodeling, reduces apoptosis, inflammation and fibrosis and increases the number of progenitor stem cells after myocardial infarction in a rat model of ischemia reperfusion. Cell Physiol Biochem 53:961–981. https://doi.org/10.33594/000000189

    Article  CAS  PubMed  Google Scholar 

  37. Abd-Elfattah AS, Ding M, Wechsler AS (1995) Intermittent aortic crossclamping prevents cumulative adenosine triphosphate depletion, ventricular fibrillation, and dysfunction (stunning): is it preconditioning? J Thorac Cardiovasc Surg 110:328–339. https://doi.org/10.1016/s0022-5223(95)70228-8

    Article  CAS  PubMed  Google Scholar 

  38. Abd-Elfattah AS, Hoehner J, Wechsler AS (1998) Identification of nucleoside transport binding sites in the human myocardium. Mol Cell Biochem 180:105–110

    Article  CAS  PubMed  Google Scholar 

  39. Lu H, Chen C, Klaassen C (2004) Tissue distribution of concentrative and equilibrative nucleoside transporters in male and female rats and mice. Drug Metab Dispos 32:1455–1461. https://doi.org/10.1124/dmd.104.001123

    Article  CAS  PubMed  Google Scholar 

  40. Abd-Elfattah AS, Aly H, Hanan S, Wechsler AS (2012) Myocardial protection in beating heart cardiac surgery: I: pre- or postconditioning with inhibition of es-ENT1 nucleoside transporter and adenosine deaminase attenuates post-MI reperfusion-mediated ventricular fibrillation and regional contractile dysfunction. J Thorac Cardiovasc Surg 144:250–255. https://doi.org/10.1016/j.jtcvs.2011.10.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rose JB, Naydenova Z, Bang A, Eguchi M, Sweeney G, Choi DS, Hammond JR, Coe IR (2010) Equilibrative nucleoside transporter 1 plays an essential role in cardioprotection. Am J Physiol Heart Circ Physiol 298:H771–H777. https://doi.org/10.1152/ajpheart.00711.2009

    Article  CAS  PubMed  Google Scholar 

  42. Audia JP, Yang XM, Crockett ES, Housley N, Haq EU, O'Donnell K, Cohen MV, Downey JM, Alvarez DF (2018) Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol 113:32. https://doi.org/10.1007/s00395-018-0692-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohman J, Kudira R, Albinsson S, Olde B, Erlinge D (2012) Ticagrelor induces adenosine triphosphate release from human red blood cells. Biochem Biophys Res Commun 418:754–758. https://doi.org/10.1016/j.bbrc.2012.01.093

    Article  CAS  PubMed  Google Scholar 

  44. Burton TR, Gibson SB (2009) The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ 16:515–523. https://doi.org/10.1038/cdd.2008.185

    Article  CAS  PubMed  Google Scholar 

  45. Dhingra R, Margulets V, Chowdhury SR, Thliveris J, Jassal D, Fernyhough P, Dorn GW 2nd, Kirshenbaum LA (2014) Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proc Natl Acad Sci USA 111:E5537–E5544. https://doi.org/10.1073/pnas.1414665111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jin J, Kunapuli SP (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA 95:8070–8074. https://doi.org/10.1073/pnas.95.14.8070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kauffenstein G, Bergmeier W, Eckly A, Ohlmann P, Leon C, Cazenave JP, Nieswandt B, Gachet C (2001) The P2Y(12) receptor induces platelet aggregation through weak activation of the alpha(IIb)beta(3) integrin–a phosphoinositide 3-kinase-dependent mechanism. FEBS Lett 505:281–290. https://doi.org/10.1016/s0014-5793(01)02824-1

    Article  CAS  PubMed  Google Scholar 

  48. Simon J, Filippov AK, Goransson S, Wong YH, Frelin C, Michel AD, Brown DA, Barnard EA (2002) Characterization and channel coupling of the P2Y(12) nucleotide receptor of brain capillary endothelial cells. J Biol Chem 277:31390–31400. https://doi.org/10.1074/jbc.M110714200

    Article  CAS  PubMed  Google Scholar 

  49. Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44:242–250. https://doi.org/10.1002/glia.10293

    Article  PubMed  Google Scholar 

  50. Satonaka H, Nagata D, Takahashi M, Kiyosue A, Myojo M, Fujita D, Ishimitsu T, Nagano T, Nagai R, Hirata Y (2015) Involvement of P2Y12 receptor in vascular smooth muscle inflammatory changes via MCP-1 upregulation and monocyte adhesion. Am J Physiol Heart Circ Physiol 308:H853–H861. https://doi.org/10.1152/ajpheart.00862.2013

    Article  CAS  PubMed  Google Scholar 

  51. Liu X, Gu Y, Liu Y, Zhang M, Wang Y, Hu L (2018) Ticagrelor attenuates myocardial ischaemia-reperfusion injury possibly through downregulating galectin-3 expression in the infarct area of rats. Br J Clin Pharmacol 84:1180–1186. https://doi.org/10.1111/bcp.13536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang XM, Gadde S, Audia JP, Alvarez DF, Downey JM, Cohen MV (2019) Ticagrelor does not protect isolated rat hearts, thus clouding its proposed cardioprotective role through ENT 1 in heart tissue. J Cardiovasc Pharmacol Ther 24:371–376. https://doi.org/10.1177/1074248419829169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kucuk M, Celen MC, Yamasan BE, Olgar Y, Ozdemir S (2015) Effects of ticagrelor on ionic currents and contractility in rat ventricular myocytes. Cardiovasc Drugs Ther 29:419–424. https://doi.org/10.1007/s10557-015-6617-2

    Article  CAS  PubMed  Google Scholar 

  54. Xie F, Liu W, Feng F, Li X, He L, Lv D, Qin X, Li L, Li L, Chen L (2015) Apelin-13 promotes cardiomyocyte hypertrophy via PI3K-Akt-ERK1/2-p70S6K and PI3K-induced autophagy. Acta Biochim Biophys Sin (Shanghai) 47:969–980. https://doi.org/10.1093/abbs/gmv111

    Article  CAS  Google Scholar 

  55. Gao H, Hou F, Dong R, Wang Z, Zhao C, Tang W, Wu Y (2016) Rho-Kinase inhibitor fasudil suppresses high glucose-induced H9c2 cell apoptosis through activation of autophagy. Cardiovasc Ther 34:352–359. https://doi.org/10.1111/1755-5922.12206

    Article  CAS  PubMed  Google Scholar 

  56. Park M, Sabetski A, Kwan Chan Y, Turdi S, Sweeney G (2015) Palmitate induces ER stress and autophagy in H9c2 cells: implications for apoptosis and adiponectin resistance. J Cell Physiol 230:630–639. https://doi.org/10.1002/jcp.24781

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Li X, Wu H, Li R, Liu H, Wang L, Bai S, Zhang L, Chen T, Liu J, Li Q, Du R (2019) Beneficial effect of ticagrelor on microvascular perfusion in patients with ST-segment elevation myocardial infarction undergoing a primary percutaneous coronary intervention. Coron Artery Dis 30:317–322. https://doi.org/10.1097/mca.0000000000000707

    Article  PubMed  Google Scholar 

  58. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140. https://doi.org/10.1126/science.1128294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M, Shulman GI (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593. https://doi.org/10.1172/jci25151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants (No. SBAG-216S979) from The Scientific and Technological Research Council of Turkey.

Author information

Authors and Affiliations

Authors

Contributions

BT designed and supervised the research and provided the final approval of the version to be published; SO supervised the research and contributed to the editing of the manuscript; YO, AD, and ET contributed and performed the experiments and analyzed the data; DB performed all electron microscopy analysis. All authors discussed the results and commented on the manuscript. It is certified that there was no data manipulation or data from papers published in other journals are included. Furthermore, appropriate precautions have been taken to maintain high ethical standards. All authors have read the manuscript and authorized the submission for publication.

Corresponding authors

Correspondence to Semir Ozdemir or Belma Turan.

Ethics declarations

Conflict of interests

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olgar, Y., Tuncay, E., Billur, D. et al. Ticagrelor reverses the mitochondrial dysfunction through preventing accumulated autophagosomes-dependent apoptosis and ER stress in insulin-resistant H9c2 myocytes. Mol Cell Biochem 469, 97–107 (2020). https://doi.org/10.1007/s11010-020-03731-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03731-9

Keywords

Navigation