Skip to main content
Log in

FAM98A promotes cancer progression in endometrial carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To investigate the expression status of FAM98A and its potential involvement in endometrial carcinoma, the relative expression of FAM98A in clinical endometrial carcinoma tissues was analyzed by immunohistochemistry and real-time polymerase chain reaction. Endogenous FAM98A protein was determined by Western blotting. The overall survival was calculated by the Kaplan–Meier’s analysis. Cell growth/viability/proliferation was evaluated by cell counting, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay, and clonogenic assay, respectively. Cell apoptosis was determined by the Annexin V/7-AAD double-staining methods followed by flow cytometry analysis. The regulatory effect of miR-142-3p on FAM98A was interrogated by luciferase reporter assay. Aberrant overexpression of FAM98A was found in endometrial carcinoma both in vitro and in vivo. Furthermore, high level of FMA98A was associated with poor prognosis. FAM98A deficiency in Ishikawa and RL95-2 cells significantly inhibited cell growth, cell viability, and cell proliferation. In addition, FAM98A-knockdown stimulated remarkable cell apoptosis, which might be mediated by down-regulation of BCL2 and up-regulation of BAX. Mechanistically, it was demonstrated that miR-142-3p directly targeted FAM98A, and modulated its expression. In conclusion, we unraveled the oncogenic properties of FAM98A in endometrial carcinoma and highlighted the miR-142-3p-FAM98A signaling in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saso S, Chatterjee J, Georgiou E, Ditri AM, Smith JR, Ghaem-Maghami S (2011) Endometrial cancer. BMJ 343:d3954. https://doi.org/10.1136/bmj.d3954

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics. CA Cancer J Clin 63(1):11–30. https://doi.org/10.3322/caac.21166

    Article  PubMed  Google Scholar 

  3. Fader AN, Arriba LN, Frasure HE, von Gruenigen VE (2009) Endometrial cancer and obesity: epidemiology, biomarkers, prevention and survivorship. Gynecol Oncol 114(1):121–127. https://doi.org/10.1016/j.ygyno.2009.03.039

    Article  PubMed  Google Scholar 

  4. Galaal K, Al Moundhri M, Bryant A, Lopes AD, Lawrie TA (2014) Adjuvant chemotherapy for advanced endometrial cancer. Cochrane Database Syst Rev 5:CD010681. https://doi.org/10.1002/14651858.cd010681.pub2

    Article  Google Scholar 

  5. Zhou JY, Zhang L, Wei LH, Wang JL (2016) Endometrial carcinoma-related genetic factors: application to research and clinical practice in China. BJOG 123(Suppl 3):90–96. https://doi.org/10.1111/1471-0528.14007

    Article  PubMed  Google Scholar 

  6. Murali R, Soslow RA, Weigelt B (2014) Classification of endometrial carcinoma: more than two types. Lancet Oncol 15(7):e268–278. https://doi.org/10.1016/S1470-2045(13)70591-6

    Article  PubMed  Google Scholar 

  7. Colombo N, Preti E, Landoni F, Carinelli S, Colombo A, Marini C, Sessa C, Group EGW (2011) Endometrial cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 22(Suppl 6):35–39. https://doi.org/10.1093/annonc/mdr374

    Article  Google Scholar 

  8. Schou KB, Andersen JS, Pedersen LB (2014) A divergent calponin homology (NN-CH) domain defines a novel family: implications for evolution of ciliary IFT complex B proteins. Bioinformatics 30(7):899–902. https://doi.org/10.1093/bioinformatics/btt661

    Article  CAS  PubMed  Google Scholar 

  9. Keaton JM, Hellwege JN, Ng MCY, Palmer ND, Pankow JS, Fornage M, Wilson JG, Correa A, Rasmussen-Torvik LJ, Rotter JI, Chen YI, Taylor KD, Rich SS, Wagenknecht LE, Freedman BI, Bowden DW (2017) Genome-wide interaction with selected type 2 diabetes loci reveals novel loci for type 2 diabetes in African Americans. Pac Symp Biocomput 22:242–253. https://doi.org/10.1142/9789813207813_0024

    Article  PubMed  Google Scholar 

  10. Fujiwara T, Ye S, Castro-Gomes T, Winchell CG, Andrews NW, Voth DE, Varughese KI, Mackintosh SG, Feng Y, Pavlos N, Nakamura T, Manolagas SC, Zhao H (2016) PLEKHM1/DEF8/RAB7 complex regulates lysosome positioning and bone homeostasis. JCI Insight 1(17):e86330. https://doi.org/10.1172/jci.insight.86330

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ozeki K, Sugiyama M, Akter KA, Nishiwaki K, Asano-Inami E, Senga T (2018) FAM98A is localized to stress granules and associates with multiple stress granule-localized proteins. Mol Cell Biochem 2:3. https://doi.org/10.1007/s11010-018-3397-6

    Article  CAS  Google Scholar 

  12. Akter KA, Mansour MA, Hyodo T, Ito S, Hamaguchi M, Senga T (2016) Erratum to: FAM98A is a novel substrate of PRMT1 required for tumor cell migration, invasion and colony formation. Tumour Biol 37(5):7001. https://doi.org/10.1007/s13277-016-4833-4

    Article  PubMed  Google Scholar 

  13. Akter KA, Mansour MA, Hyodo T, Senga T (2017) FAM98A associates with DDX1-C14orf166-FAM98B in a novel complex involved in colorectal cancer progression. Int J Biochem Cell Biol 84:1–13. https://doi.org/10.1016/j.biocel.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  14. Jia XP, Meng LL, Fang JC, Wang HW, Chen J, Zhou J, Wang CN, Jiang WF (2018) Aberrant expression of miR-142-3p and its target gene HMGA1 and FZD7 in breast cancer and its clinical significance. Clin Lab 64(6):915–921. https://doi.org/10.7754/Clin.Lab.2017.171114

    Article  CAS  PubMed  Google Scholar 

  15. Gao J, Wu N, Liu X, Xia Y, Chen Y, Li S, Deng Z (2018) MicroRNA-142-3p inhibits cell proliferation and chemoresistance in ovarian cancer via targeting sirtuin 1. Exp Ther Med 15(6):5205–5214. https://doi.org/10.3892/etm.2018.6107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Cao Z, Wang L, Liu S, Cai J (2018) Downregulation of microRNA-142-3p and its tumor suppressor role in gastric cancer. Oncol Lett 15(5):8172–8180. https://doi.org/10.3892/ol.2018.8330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Godfrey JD, Morton JP, Wilczynska A, Sansom OJ, Bushell MD (2018) MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus. Cell Death Dis 9(6):644. https://doi.org/10.1038/s41419-018-0628-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cai Y, Wang W, Guo H, Li H, Xiao Y, Zhang Y (2018) miR-9-5p, miR-124-3p, and miR-132-3p regulate BCL2L11 in tuberous sclerosis complex angiomyolipoma. Lab Invest. https://doi.org/10.1038/s41374-018-0051-6

    Article  PubMed  Google Scholar 

  19. Trissal MC, Wong TN, Yao JC, Ramaswamy R, Kuo I, Baty J, Sun Y, Jih G, Parikh N, Berrien-Elliott MM, Fehniger TA, Ley TJ, Maillard I, Reddy PR, Link DC (2018) MIR142 loss-of-function mutations derepress ASH1L to increase HOXA gene expression and promote leukemogenesis. Cancer Res 78(13):3510–3521. https://doi.org/10.1158/0008-5472.CAN-17-3592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee YY, Yarmishyn AA, Wang ML, Chen HY, Chiou SH, Yang YP, Lin CF, Huang PI, Chen YW, Ma HI, Chen MT (2018) MicroRNA-142-3p is involved in regulation of MGMT expression in glioblastoma cells. Cancer Manag Res 10:775–785. https://doi.org/10.2147/CMAR.S157261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hua S, Liu C, Liu L, Wu D (2018) miR-142-3p inhibits aerobic glycolysis and cell proliferation in hepatocellular carcinoma via targeting LDHA. Biochem Biophys Res Commun 496(3):947–954. https://doi.org/10.1016/j.bbrc.2018.01.112

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Liu Z, Fang X, Yang H (2017) MiR-142-5p suppresses tumorigenesis by targeting PIK3CA in non-small cell lung cancer. Cell Physiol Biochem 43(6):2505–2515. https://doi.org/10.1159/000484459

    Article  CAS  PubMed  Google Scholar 

  23. Islam F, Gopalan V, Vider J, Lu CT, Lam AK (2018) MiR-142-5p act as an oncogenic microRNA in colorectal cancer: clinicopathological and functional insights. Exp Mol Pathol 104(1):98–107. https://doi.org/10.1016/j.yexmp.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  24. Bai X, Zhou Y, Chen P, Yang M, Xu J (2018) MicroRNA-142-5p induces cancer stem cell-like properties of cutaneous squamous cell carcinoma via inhibiting PTEN. J Cell Biochem 119(2):2179–2188. https://doi.org/10.1002/jcb.26379

    Article  CAS  PubMed  Google Scholar 

  25. Liu L, Liu S, Duan Q, Chen L, Wu T, Qian H, Yang S, Xin D, He Z, Guo Y (2017) MicroRNA-142-5p promotes cell growth and migration in renal cell carcinoma by targeting BTG3. Am J Transl Res 9(5):2394–2402

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Huo J, Pan X, Wang C, Ma X (2018) MicroRNA 302b-3p/302c-3p/302d-3p inhibits epithelial-mesenchymal transition and promotes apoptosis in human endometrial carcinoma cells. Onco Targets Ther 11:1275–1284. https://doi.org/10.2147/OTT.S154517

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Li H, Zhao C, Jia H (2018) MicroRNA-101 inhibits angiogenesis via COX-2 in endometrial carcinoma. Mol Cell Biochem. https://doi.org/10.1007/s11010-018-3313-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ma J, Li D, Kong FF, Yang D, Yang H, Ma XX (2018) miR-302a-5p/367-3p-HMGA2 axis regulates malignant processes during endometrial cancer development. J Exp Clin Cancer Res 37(1):19. https://doi.org/10.1186/s13046-018-0686-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu Z, Nian Z, Jingjing Z, Tao L, Quan L (2017) MicroRNA-424/E2F6 feedback loop modulates cell invasion, migration and EMT in endometrial carcinoma. Oncotarget 8(69):114281–114291. https://doi.org/10.18632/oncotarget.23218

    Article  PubMed  PubMed Central  Google Scholar 

  30. Devor EJ, Miecznikowski J, Schickling BM, Gonzalez-Bosquet J, Lankes HA, Thaker P, Argenta PA, Pearl ML, Zweizig SL, Mannel RS, Brown A, Ramirez NC, Ioffe OB, Park KJ, Creasman WT, Birrer MJ, Mutch D, Leslie KK (2017) Dysregulation of miR-181c expression influences recurrence of endometrial endometrioid adenocarcinoma by modulating NOTCH2 expression: an NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol 147(3):648–653. https://doi.org/10.1016/j.ygyno.2017.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen HX, Xu XX, Tan BZ, Zhang Z, Zhou XD (2017) MicroRNA-29b inhibits angiogenesis by targeting VEGFA through the MAPK/ERK and PI3 K/Akt signaling pathways in endometrial carcinoma. Cell Physiol Biochem 41(3):933–946. https://doi.org/10.1159/000460510

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All patients have written informed consents.

Research involving human participants and/or animals

This study had been approved by the Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, N., Sun, X. et al. FAM98A promotes cancer progression in endometrial carcinoma. Mol Cell Biochem 459, 131–139 (2019). https://doi.org/10.1007/s11010-019-03556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03556-1

Keywords

Navigation