Skip to main content

Advertisement

Log in

Chlamydia trachomatis plasmid-encoded protein Pgp3 inhibits apoptosis via the PI3K-AKT-mediated MDM2-p53 axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chlamydia trachomatis, the most common human pathogen that causes trachoma and sexually transmitted disease, has developed various strategies for inhibiting host cell apoptosis. Activation of the PI3K (phosphoinositide 3-kinase)/AKT-mediated MDM2 (murine double minute 2)-p53 pathway plays a prominent role in the apoptosis resistance arising from C. trachomatis infection. However, the precise upstream mechanisms by which C. trachomatis activates this pathway have not been adequately investigated. Here, we reveal that the secreted C. trachomatis plasmid-encoded protein Pgp3 inhibits apoptosis in HeLa cells. This process requires the activation of the PI3K/AKT signaling pathway, thereby leading to phosphorylation and nuclear entry of MDM2, and p53 degradation. PI3 K inhibitor LY294002 and MDM2 inhibitor Nutlin-3a block Pgp3-induced inhibition of HeLa cell apoptosis, suggesting a critical role for the PI3K/AKT pathway and its effect on the MDM2-p53 axis in Pgp3 anti-apoptotic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bebear C, de Barbeyrac B (2009) Genital chlamydia trachomatis infections. Clin Microbiol Infect 15(1):4–10

    Article  CAS  PubMed  Google Scholar 

  2. Belland R, Ojcius DM, Byrne GI (2004) Chlamydia. Nat Rev Microbiol 2(7):530–531

    Article  CAS  PubMed  Google Scholar 

  3. Budrys NM, Gong S, Rodgers AK, Wang J, Louden C, Shain R, Schenken RS, Zhong G (2012) Chlamydia trachomatis antigens recognized in women with tubal factor infertility, normal fertility, and acute infection. Obstet Gynecol 119(5):1009–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhu H, Shen Z, Luo H, Zhang W, Zhu X (2016) Chlamydia Trachomatis infection-associated risk of cervical cancer: a meta-analysis. Medicine 95(13):e3077

    Article  PubMed  PubMed Central  Google Scholar 

  5. Byrne GI, Ojcius DM (2004) Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol 2(10):802–808

    Article  CAS  PubMed  Google Scholar 

  6. Hardwick JM, Soane L (2013) Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol 5(2):a008722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Bio 15(1):49–63

    Article  CAS  Google Scholar 

  8. Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Gene Dev 17(20):2481–2495

    Article  CAS  PubMed  Google Scholar 

  9. Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, Greenberg AH, Zhong G (1998) Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187(4):487–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bourdon JC, Laurenzi VD, Melino G, Lane D (2003) p53: 25 years of research and more questions to answer. Cell Death Differ 10(4):397–399

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez E, Rother M, Kerr MC, Al-Zeer MA, Abu-Lubad M, Kessler M, Brinkmann V, Loewer A, Meyer TF (2014) Chlamydia infection depends on a functional MDM2-p53 axis. Nat Commun 5:5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Siegl C, Prusty BK, Karunakaran K, Wischhusen J, Rudel T (2014) Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection. Cell Rep 9(3):918–929

    Article  CAS  PubMed  Google Scholar 

  13. Thomas NS, Lusher M, Storey CC, Clarke IN (1997) Plasmid diversity in Chlamydia. Microbiol 143(Pt 6):1847–1854

    CAS  Google Scholar 

  14. Rajalingam K, Sharma M, Lohmann C, Oswald M, Thieck O, Froelich CJ, Rudel T (2008) Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-infected cells. PLoS ONE 3(9):e3102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhong G (2016) Chlamydial plasmid-dependent pathogenicity. Trends Microbiol 25(2):141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou H, Huang Q, Li Z, Wu Y, Xie X, Ma K, Cao W, Zhou Z, Lu C, Zhong G (2013) PORF5 plasmid protein of Chlamydia trachomatis induces MAPK-mediated pro-inflammatory cytokines via TLR2 activation in THP-1 cells. Sci China Life Sci 56(5):460–466

    Article  CAS  PubMed  Google Scholar 

  17. Cao W, Zou Y, Su S, He Z, Liu Y, Huang Q, Li Z (2015) Chlamydial plasmid-encoded protein pORF5 induces production of IL-1beta and IL-18 via NALP3 inflammasome activation and p38 MAPK pathway. Int J Clin Exp Med 8(11):20368–20379

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong F, Pirbhai M, Xiao Y, Zhong Y, Wu Y, Zhong G (2005) Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells. Infect Immun 73(3):1861–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98(20):11598–11603

    Article  CAS  PubMed  Google Scholar 

  20. Chao CC (2015) Mechanisms of p53 degradation. Clin Chim Acta 438:139–147

    Article  CAS  PubMed  Google Scholar 

  21. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    Article  CAS  PubMed  Google Scholar 

  22. Sigar IM, Schripsema JH, Wang Y, Clarke IN, Cutcliffe LT, Seth-Smith HM, Thomson NR, Bjartling C, Unemo M, Persson K, Ramsey KH (2014) Plasmid deficiency in urogenital isolates of Chlamydia trachomatis reduces infectivity and virulence in a mouse model. Pathog Dis 70(1):61–69

    Article  CAS  PubMed  Google Scholar 

  23. Gong S, Yang Z, Lei L, Shen L, Zhong G (2013) Characterization of Chlamydia trachomatis plasmid-encoded open reading frames. J Bacteriol 195(17):3819–3826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song L, Carlson JH, Whitmire WM, Kari L, Virtaneva K, Sturdevant DE, Watkins H, Zhou B, Sturdevant GL, Porcella SF, McClarty G, Caldwell HD (2013) Chlamydia trachomatis plasmid-encoded Pgp4 is a transcriptional regulator of virulence-associated genes. Infect Immun 81(3):636–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Huang Y, Yang Z, Sun Y, Gong S, Hou S, Chen C, Li Z, Liu Q, Wu Y, Baseman J, Zhong G (2014) Plasmid-encoded Pgp3 is a major virulence factor for Chlamydia muridarum to induce hydrosalpinx in mice. Infect Immun 82(12):5327–5335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Z, Wang S, Wu Y, Zhong G, Chen D (2008) Immunization with chlamydial plasmid protein pORF5 DNA vaccine induces protective immunity against genital chlamydial infection in mice. Sci China C Life Sci 11:973–980

    Article  CAS  Google Scholar 

  27. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  28. Sharma M, Rudel T (2009) Apoptosis resistance in Chlamydia-infected cells: a fate worse than death? FEMS Immunol Med Microbiol 55(2):154–161

    Article  CAS  PubMed  Google Scholar 

  29. Kun D, Xiang-Lin C, Ming Z, Qi L (2013) Chlamydia inhibit host cell apoptosis by inducing Bag-1 via the MAPK/ERK survival pathway. Apoptosis 18(9):1083–1092

    Article  CAS  PubMed  Google Scholar 

  30. Ying S, Christian JG, Paschen SA, Häcker G (2008) Chlamydia trachomatis can protect host cells against apoptosis in the absence of cellular inhibitor of apoptosis proteins and Mcl-1. Microbes Infect 10(1):97–101

    Article  CAS  PubMed  Google Scholar 

  31. Zhong G (2011) Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front Microbiol 2:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pirbhai M, Dong F, Zhong Y, Pan KZ, Zhong G (2006) The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J Biol Chem 281(42):31495–31501

    Article  CAS  PubMed  Google Scholar 

  33. Ruiz-Vela A, Opferman JT, Cheng EH, Korsmeyer SJ (2005) Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Rep 6(4):379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  35. Falasca M (2010) PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Design 16(12):1410–1416

    Article  CAS  Google Scholar 

  36. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988–1004

    Article  CAS  PubMed  Google Scholar 

  37. Subbarayal P, Karunakaran K, Winkler AC, Rother M, Gonzalez E, Meyer TF, Rudel T (2015) EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. PLoS Pathog 11(4):e1004846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31470277 and 81102230), Construct Program of the Key Discipline in Hunan Province (No. 2011-76), Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control (No. 2014-5), and Hunan Province Cooperative innovation Center for Molecular Target New Drug Study (No. 2014-405).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiulin Huang or Zhongyu Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Wenbo Lei contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Lei, W., Su, S. et al. Chlamydia trachomatis plasmid-encoded protein Pgp3 inhibits apoptosis via the PI3K-AKT-mediated MDM2-p53 axis. Mol Cell Biochem 452, 167–176 (2019). https://doi.org/10.1007/s11010-018-3422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3422-9

Keywords

Navigation