Skip to main content
Log in

Activator protein-1 (AP-1): a bridge between life and death in lung epithelial (A549) cells under hypoxia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Activator protein-1 (AP-1) transcription factor plays a central role in hypoxia to modulate the expression of genes that decides the fate of the cell. The aim of the present study was to explore the role of AP-1 subunits in lung epithelial (A549) cells under hypoxia. Cell cycle studies by flow cytometry indicated that cell viability was unaffected by the initial hypoxia exposure (0.5% O2 at 37 °C) for 6 and 12 h. However, both transient cell cycle arrest and cell death was detected at 24 and 48 h. Flow cytometry and spectrofluorometry data confirmed the increase in ROS levels. Elevated ROS and calcium levels activated the stress-related MAPK signaling cascade. ERK and JNK were activated in early hypoxic exposure (within 6 h), whereas p38 were activated in 48 h of hypoxia. These subtypes further stimulated the subunits of AP-1 at different times of hypoxia exposure to orchestrate different genes responsible for cell proliferation (6 and 12 h) and apoptosis (24 and 48 h). Our results clearly depict the role of AP-1 heterodimer, i.e., p-c-jun/c-fos, p-c-jun/fosB, junD/c-fos, and junD/fosB in cell proliferation/survival by regulating the expression of Bcl-2 and cyclins (D1 and B1) at 6 h and 12 h of hypoxia, whereas junB/Fra-1 heterodimer have important role in apoptosis by regulating the expression of p53, Bax, and cyclin-dependent kinase inhibitors (p16, p21, p27) at 24 h and 48 h of hypoxia. Also, the cell survival signaling pathway NO-AKT interrupted at 24 h and 48 h of hypoxia indicating cell death. In conclusion, hypoxia for different time points activated different subunits of AP-1 that combined to form different heterodimers. These dimers regulated the expression of genes responsible for cell proliferation and apoptosis. Since, AP-1 plays a role in the decisive phenomenon of the cell to choose between proliferation and apoptosis; thus, its subunits or dimers could be a good therapeutic target for many diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

p-c-jun:

Phosphorylated-c-jun

MAPK:

Mitogen-activated protein kinase

JNK:

Janus N-terminal kinase

ERK:

Extracellular signal-regulated kinases

AKT:

Protein kinase B

ROS:

Reactive oxygen species

NO:

Nitric oxide

References

  1. Singh N, Dhalla AK, Seneviratne C, Singal PK (1995) Oxidative stress and heart failure. Mol Cell Biochem 147:77–81. doi:10.1007/BF00944786

    Article  CAS  PubMed  Google Scholar 

  2. Ramond A, Godin-Ribuot D, Ribuot C, Totoson P, Koritchneva I, Cachot S, Levy P, Joyeux-Faure M (2011) Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam Clin Pharmacol 27:252–261. doi:10.1111/j.1472-8206.2011.01015

    Article  PubMed  Google Scholar 

  3. Dean OM, van den Buuse M, Berk M, Copolov DL, Mavros C, Bush AI (2011) N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and D-amphetamine-treated rats: relevance to schizophrenia and bipolar disorder. Neurosci Lett 499:149–153. doi:10.1016/j.neulet.2011.05.027

    Article  CAS  PubMed  Google Scholar 

  4. Halliwell Barry (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11. doi:10.1042/BJ20061131

    Article  CAS  PubMed  Google Scholar 

  5. Clerici Christine, Planès Carole (2008) Gene regulation in the adaptive process to hypoxia in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 296:267–274. doi:10.1152/ajplung.90528.2008?

    Article  Google Scholar 

  6. Son Yong, Cheong Yong-Kwan, Kim Nam-Ho, Chung Hun-Taeg, Kang Dae Gill, Pae Hyun-Ock (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Sign Transduct. doi:10.1155/2011/7926395

    Google Scholar 

  7. Hwang O (2013) Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 22:11–17. doi:10.5607/en.2013.22.1.11

    Article  PubMed  PubMed Central  Google Scholar 

  8. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. doi:10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  9. Pohanka M (2013) Alzheimer´s disease and oxidative stress: a review. Curr Med Chem 21:356–364. doi:10.2174/09298673113206660258

    Article  Google Scholar 

  10. Bonomini F, Tengattini S, Fabiano A, Bianchi R, Rezzani R (2008) Atherosclerosis and oxidative stress. Histol Histopathol 23:381–390

    CAS  PubMed  Google Scholar 

  11. Amer J, Ghoti H, Rachmilewitz E, Koren A, Levin C, Fibach E (2006) Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Hematol 132:108–113. doi:10.1111/j.1365-2141.2005.05834

    Article  CAS  Google Scholar 

  12. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Jenkins CW, Nichols MA, Xiong Y (1994) Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9:2261–2268

    CAS  PubMed  Google Scholar 

  14. P53 (2016, May 9). In Wikipedia, the free encyclopedia. Retrieved 06:02, 13 May 2016, from https://en.wikipedia.org/w/index.php?title=P53&oldid=719463747

  15. Sherr Charles J, Roberts James M (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  CAS  PubMed  Google Scholar 

  16. Stepniak Ewa, Ricci Romeo, Eferl Robert, Sumara Grzegorz, Sumara Izabela, Rath Martina, Hui Lijian, Wagner Erwin F (2006) c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev 20:2306–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797:1171–1177. doi:10.1016/j.bbabio.2010.02.011

    Article  CAS  PubMed  Google Scholar 

  18. Santos CXC, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50:777–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yin Jie (2013) Oxidative stress-mediated signaling pathways-A review. J Food Agric Environ 11:132–139

    Google Scholar 

  20. Schieber Michael, Chandel Navdeep S (2014) ROS function in redox signaling and review oxidative stress. Curr Biol. doi:10.1016/j.cub.2014.03.034

    PubMed  PubMed Central  Google Scholar 

  21. Sheng Morgan, Greenberg Michael E (1990) The regulation and function of c-fos and other immediate early genes in the nervous system 4:477–485

    CAS  Google Scholar 

  22. Hoffman GE, Smith MS, Verbalis JG (1993) c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 14:173–213

    Article  CAS  PubMed  Google Scholar 

  23. Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839–885

    CAS  PubMed  Google Scholar 

  24. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    CAS  PubMed  Google Scholar 

  25. Kaminska Bozena, Pyrzynska Beata, Ciechomska Iwona, Wisniewska Marta (2000) Modulation of the composition of AP-1 complex and its impact on transcriptional activity. Acta Neurobiol 60:395–402

    CAS  Google Scholar 

  26. Ryseck Rolf-Peter, Bravo Rodrigo (1991) c-JUN, JUN B, and JUN D differ in their binding affinities to AP-1 and CRE consensus sequences: effect of FOS proteins. Oncogene 6:533–542

    CAS  PubMed  Google Scholar 

  27. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–157

    CAS  PubMed  Google Scholar 

  28. Van Dam H, Castellazzi M (2001) Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene 20:2453–2464

    Article  CAS  PubMed  Google Scholar 

  29. LeBel CP, Ali SF, McKee M, Bondy SC (1990) Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104:17–24

    Article  CAS  PubMed  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  31. Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    CAS  PubMed  Google Scholar 

  32. Thiel G, Lesch A, Keim A (2012) Transcriptional response to calcium-sensing receptor stimulation. Endocrinology 153:4716–4728

    Article  CAS  PubMed  Google Scholar 

  33. van Faassen Ernst E (2009) Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev 29(5):683–741. doi:10.1002/med.20151

    Article  PubMed  PubMed Central  Google Scholar 

  34. Premkumar DR, Adhikary G, Overholt JL, Simonson MS, Cherniack NS, Prabhakar NR (2000) Intracellular pathways linking hypoxia to activation of c-fos and AP-1. Adv Exp Med Biol 475:101–109

    Article  CAS  PubMed  Google Scholar 

  35. Jochum Wolfram (2001) AP-1 in mouse development and tumorigenesis. Oncogene 20:2401–2412

    Article  CAS  PubMed  Google Scholar 

  36. Shaulian Eitan, Karin Michael (2001) AP-1 as a regulator of cell life and death. Oncogene 20:2390–2400

    Article  CAS  PubMed  Google Scholar 

  37. Carmeliet Peter (1998) Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490. doi:10.1038/28867

    Article  CAS  PubMed  Google Scholar 

  38. Yu Z, Sato Seiichi, Trackman Philip C, Kirsch Kathrin H, Sonenshein Gail E (2012) Blimp1 activation by AP-1 in human lung cancer cells promotes a migratory phenotype and is inhibited by the lysyl oxidase propeptide. PLoS ONE. doi:10.1371/journal.pone.0033287

    Google Scholar 

  39. Ashida R, Tominaga K, Sasaki E (2005) AP-1 and colorectal cancer. Inflammopharmacology 13:113. doi:10.1163/156856005774423935

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Chunyan, Qiao Yichun, Jonsson Philip, Wang Jian, Li Xu, Rouhi Pegah, Sinha Indranil, Cao Yihai, Williams Cecilia, Dahlman-Wright Karin (2014) Genome-wide profiling of AP-1 regulated transcription provides insights into the invasiveness of triple-negative breast cancer. Am Assoc Cancer Res. doi:10.1158/0008-5472.CAN-13-3396

    Google Scholar 

  41. Eckert RL, Adhikary G, Young CA, Jans R, Crish JF, Xu W, Rorke EA (2013) AP1 transcription factors in epidermal differentiation and skin cancer. J Skin Cancer, Article ID 537028. doi:10.1155/2013/537028

Download references

Acknowledgements

The authors acknowledge the Defence Research and Development Organization (DRDO), Director, Defence Institute of Physiology and Allied Sciences (DIPAS) and Council of Scientific and Industrial Research, India for providing necessary facilities and funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinalini Singh.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Kalra, N., Ganju, L. et al. Activator protein-1 (AP-1): a bridge between life and death in lung epithelial (A549) cells under hypoxia. Mol Cell Biochem 436, 99–110 (2017). https://doi.org/10.1007/s11010-017-3082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3082-1

Keywords

Navigation