Skip to main content
Log in

CREB1 regulates glucose transport of glioma cell line U87 by targeting GLUT1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Glioma is stemmed from the glial cells in the brain, which is accounted for about 45% of all intracranial tumors. The characteristic of glioma is invasive growth, as well as there is no obvious boundary between normal brain tissue and glioma tissue, so it is difficult to resect completely with worst prognosis. The metabolism of glioma is following the Warburg effect. Previous researches have shown that GLUT1, as a glucose transporter carrier, affected the Warburg effect, but the molecular mechanism is not very clear. CREB1 (cAMP responsive element-binding protein1) is involved in various biological processes, and relevant studies confirmed that CREB1 protein regulated the expression of GLUT1, thus mediating glucose transport in cells. Our experiments mainly reveal that the CREB1 could affect glucose transport in glioma cells by regulating the expression of GLUT1, which controlled the metabolism of glioma and affected the progression of glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jiang YS, Lei JA, Feng F, Liang QM, Wang FR (2014) Probucol suppresses human glioma cell proliferation in vitro via ROS production and LKB1-AMPK activation. Acta Pharmacol Sin 35:1556–1565. doi:10.1038/aps.2014.88

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yuen CA, Asuthkar S, Guda MR, Tsung AJ, Velpula KK (2016) Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept. Cns Oncol 5:101

    Article  CAS  PubMed  Google Scholar 

  3. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cornago M, Garcia-Alberich C, Blasco-Angulo N, Vall-Llaura N, Nager M, Herreros J, Comella JX, Sanchis D, Llovera M (2014) Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe. Cell Death Dis 5:e1435. doi:10.1038/cddis.2014.412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hou X, Liu Y, Liu H, Chen X, Liu M, Che H, Guo F, Wang C, Zhang D, Wu J, Chen X, Shen C, Li C, Peng F, Bi Y, Yang Z, Yang G, Ai J, Gao X, Zhao S (2015) PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2′s mitochondria translocation. Sci Rep 5:9065. doi:10.1038/srep09065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Potter M, Newport E, Morten KJ (2016) The Warburg effect: 80 years on. Biochem Soc Trans 44:1499–1505. doi:10.1042/BST20160094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao F, Ming J, Zhou Y, Fan L (2016) Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol 77:963–972. doi:10.1007/s00280-016-3007-9

    Article  CAS  PubMed  Google Scholar 

  8. Kapoor K, Finer-Moore JS, Pedersen BP, Caboni L, Waight A, Hillig RC, Bringmann P, Heisler I, Muller T, Siebeneicher H, Stroud RM (2016) Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Proc Natl Acad Sci USA 113:4711–4716. doi:10.1073/pnas.1603735113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, Lin M, Yu H, Liu L, Levine AJ, Hu W, Feng Z (2013) Tumour-associated mutant p53 drives the Warburg effect. Nat Commun 4:2935. doi:10.1038/ncomms3935

    PubMed  PubMed Central  Google Scholar 

  10. Goren I, Tavor E, Goldblum A, Honigman A (2001) Two cysteine residues in the DNA-binding domain of CREB control binding to CRE and CREB-mediated gene expression. J Mol Biol 313:695–709

    Article  CAS  PubMed  Google Scholar 

  11. Mehta SL, Mendelev N, Kumari S, Andy Li P (2013) Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway. Int J Biochem Cell Biol 45:604–611. doi:10.1016/j.biocel.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  12. Fujimura M, Usuki F (2017) Site-specific neural hyperactivity via the activation of MAPK and PKA/CREB pathways triggers neuronal degeneration in methylmercury-intoxicated mice. Toxicol Lett 271:66–73. doi:10.1016/j.toxlet.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  13. Conkright MD, Montminy M (2005) CREB: the unindicted cancer co-conspirator. Trends Cell Biol 15:457–459. doi:10.1016/j.tcb.2005.07.007

    Article  CAS  PubMed  Google Scholar 

  14. Wu D, Zhau HE, Huang WC, Iqbal S, Habib FK, Sartor O, Cvitanovic L, Marshall FF, Xu Z, Chung LW (2007) cAMP-responsive element-binding protein regulates vascular endothelial growth factor expression: implication in human prostate cancer bone metastasis. Oncogene 26:5070–5077. doi:10.1038/sj.onc.1210316

    Article  CAS  PubMed  Google Scholar 

  15. Seo HS, Liu DD, Bekele BN, Kim MK, Pisters K, Lippman SM, Wistuba II, Koo JS (2008) Cyclic AMP response element-binding protein overexpression: a feature associated with negative prognosis in never smokers with non-small cell lung cancer. Cancer Res 68:6065–6073. doi:10.1158/0008-5472.CAN-07-5376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malla R, Gopinath S, Alapati K, Gondi CS, Gujrati M, Dinh DH, Mohanam S, Rao JS (2010) Downregulation of uPAR and cathepsin B induces apoptosis via regulation of Bcl-2 and Bax and inhibition of the PI3K/Akt pathway in gliomas. PLoS ONE 5:e13731. doi:10.1371/journal.pone.0013731

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mantamadiotis T, Papalexis N, Dworkin S (2012) CREB signalling in neural stem/progenitor cells: recent developments and the implications for brain tumour biology. Bioessays 34:293–300. doi:10.1002/bies.201100133

    Article  CAS  PubMed  Google Scholar 

  18. Tan X, Wang S, Zhu L, Wu C, Yin B, Zhao J, Yuan J, Qiang B, Peng X (2012) cAMP response element-binding protein promotes gliomagenesis by modulating the expression of oncogenic microRNA-23a. Proc Natl Acad Sci USA 109:15805–15810. doi:10.1073/pnas.1207787109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rao M, Zhu Y, Zhou Y, Cong X, Feng L (2017) MicroRNA-122 inhibits proliferation and invasion in gastric cancer by targeting CREB1. Am J Cancer Res 7:323

    PubMed  PubMed Central  Google Scholar 

  20. Zubenko GS, Hughes HB 3rd, Stiffler JS, Brechbiel A, Zubenko WN, Maher BS, Marazita ML (2003) Sequence variations in CREB1 cosegregate with depressive disorders in women. Mol Psychiatry 8:611–618. doi:10.1038/sj.mp.4001354

    Article  CAS  PubMed  Google Scholar 

  21. Tran NQV, Miyake K (2017) Neurodevelopmental disorders and environmental toxicants: epigenetics as an underlying mechanism. Int J Genom 2017:1–23. doi:10.1155/2017/7526592

    Article  Google Scholar 

  22. Park SA, Lee JW, Herbst RS, Koo JS (2016) GSK-3alpha is a novel target of CREB and CREB-GSK-3alpha signaling participates in cell viability in lung cancer. PLoS ONE 11:e0153075. doi:10.1371/journal.pone.0153075

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhu J, Zou Z, Nie P, Kou X, Wu B, Wang S, Song Z, He J (2016) Downregulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1 expression. Cell Death Dis 7:e2454. doi:10.1038/cddis.2016.361

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Lang T, Jin B, Chen F, Zhang Y, Beuerman RW, Zhou L, Zhang Z (2017) Luteolin inhibits colorectal cancer cell epithelial-to-mesenchymal transition by suppressing CREB1 expression revealed by comparative proteomics study. J Proteom 161:1–10. doi:10.1016/j.jprot.2017.04.005

    Article  CAS  Google Scholar 

  25. Daniel P, Filiz G, Brown DV, Hollande F, Gonzales M, D’Abaco G, Papalexis N, Phillips WA, Malaterre J, Ramsay RG, Mantamadiotis T (2014) Selective CREB-dependent cyclin expression mediated by the PI3 K and MAPK pathways supports glioma cell proliferation. Oncogenesis 3:e108. doi:10.1038/oncsis.2014.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Strickland M, Stoll EA (2017) Metabolic reprogramming in glioma. Front Cell Dev Biol 5:43. doi:10.3389/fcell.2017.00043

    Article  PubMed  PubMed Central  Google Scholar 

  27. Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151. doi:10.1038/nrm3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hashimoto K, Tsuji Y (2017) Arsenic-induced activation of the Homeodomain-Interacting Protein Kinase 2 (HIPK2) to cAMP-Response Element Binding Protein (CREB) Axis. J Mol Biol 429:64–78. doi:10.1016/j.jmb.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  29. Phadngam S, Castiglioni A, Ferraresi A, Morani F, Follo C, Isidoro C (2016) PTEN dephosphorylates AKT to prevent the expression of GLUT1 on plasmamembrane and to limit glucose consumption in cancer cells. Oncotarget 7:84999

    PubMed  PubMed Central  Google Scholar 

  30. Fan R, Hou WJ, Zhao YJ, Liu SL, Qiu XS, Wang EH, Wu GP (2016) Overexpression of HPV16 E6/E7 mediated HIF-1alpha upregulation of GLUT1 expression in lung cancer cells. Tumour Biol 37:4655–4663. doi:10.1007/s13277-015-4221-5

    Article  CAS  PubMed  Google Scholar 

  31. Oh S, Kim H, Nam K, Shin I (2016) Glut1 promotes cell proliferation, migration and invasion by regulating epidermal growth factor receptor and integrin signaling in triple-negative breast cancer cells. BMB Rep 50:132–137

    Article  Google Scholar 

  32. Nie S, Li K, Huang Y, Hu Q, Gao X, Jie S (2015) miR-495 mediates metabolic shift in glioma cells via targeting Glut1. J Craniofac Surg 26:e155–e158. doi:10.1097/SCS.0000000000001385

    Article  PubMed  Google Scholar 

  33. Kim MO, Lee YJ, Park JH, Ryu JM, Yun SP, Han HJ (2012) PKA and cAMP stimulate proliferation of mouse embryonic stem cells by elevating GLUT1 expression mediated by the NF-kappaB and CREB/CBP signaling pathways. Biochim Biophys Acta 1820:1636–1646. doi:10.1016/j.bbagen.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  34. Horike N, Sakoda H, Kushiyama A, Ono H, Fujishiro M, Kamata H, Nishiyama K, Uchijima Y, Kurihara Y, Kurihara H, Asano T (2008) AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver. J Biol Chem 283:33902–33910. doi:10.1074/jbc.M802537200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang L, Xu Y, Xu J, Wei Y, Xu X (2016) Protein kinase A inhibitor, H89, enhances survival and clonogenicity of dissociated human embryonic stem cells through Rho-associated coiled-coil containing protein kinase (ROCK) inhibition. Hum Reprod 31:832–843. doi:10.1093/humrep/dew011

    Article  CAS  PubMed  Google Scholar 

  36. Sapio L, Gallo M, Illiano M, Chiosi E, Naviglio D, Spina A, Naviglio S (2017) The natural cAMP elevating compound Forskolin in cancer therapy: is it time? J Cell Physiol 232:922–927. doi:10.1002/jcp.25650

    Article  CAS  PubMed  Google Scholar 

  37. Meneses AM, Medina RA, Kato S, Pinto M, Jaque MP, Lizama I, García ML, Nualart F, Owen GI (2008) Regulation of GLUT3 and glucose uptake by the cAMP signalling pathway in the breast cancer cell line ZR-75. J Cell Physiol 214:110–116

    Article  CAS  PubMed  Google Scholar 

  38. Ogura K, Sakata M, Okamoto Y, Yasui Y, Tadokoro C, Yoshimoto Y, Yamaguchi M, Kurachi H, Maeda T, Murata Y (2000) 8-bromo-cyclicAMP stimulates glucose transporter-1 expression in a human choriocarcinoma cell line. J Endocrinol 164:171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Chinese National Natural Science Foundation (Grant Nos. 31571171, 31600867, and 31100838), the Shanghai Natural Science Foundation (Grant No. 15ZR1414900), the Key Laboratory of Medical Electrophysiology (Southwest Medical University) of Ministry of Education of China (Grant No. 201502), and the Young Teachers of Shanghai Universities Training Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuxue Chen or Dongshu Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, C., Mi, Y. et al. CREB1 regulates glucose transport of glioma cell line U87 by targeting GLUT1. Mol Cell Biochem 436, 79–86 (2017). https://doi.org/10.1007/s11010-017-3080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3080-3

Keywords

Navigation