Skip to main content

Advertisement

Log in

Methotrexate affects HMGB1 expression in rheumatoid arthritis, and the downregulation of HMGB1 prevents rheumatoid arthritis progression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

High-mobility group box 1 (HMGB1) is associated with the development of rheumatoid arthritis (RA). Recent studies have shown that methotrexate (MTX) may inhibit the expression of HMGB1. This study examined whether HMGB1 might be involved in the treatment of RA using MTX. Synovial tissues were collected from RA patients who were treated with MTX for at least 6 months (RA-MTX group, 7 cases) and from those without MTX treatment (RA-noMTX group, 7 cases). Additionally, patients with osteoarthritis (OA group, 7 cases) were used as controls. The expression and locations of HMGB1 in the tissues were detected using real-time PCR, western blot, and immunohistochemistry. Additionally, OA-fibroblast-like synoviocytes (FLSs) and RA-FLSs were isolated and cultured, and the expression of HMGB1 was reduced in these cells by transfection with HMGB1 siRNA. Cell proliferation, migration, and invasion abilities were detected. Furthermore, the effects of HMGB1 on matrix metalloproteinase (MMP)-2 and MMP-13 were measured using western blot analysis. At the tissue level, HMGB1 expression in synovial membrane did not differ significantly between the OA and RA-MTX groups, but was significantly lower in these groups than in the RA-noMTX group. In cell experiments, the cell doubling time in the RA-FLS HMGB1 siRNA group was significantly extended compared with that in the RA-FLS negative control (NC)-siRNA group. The amount of cell migration and invasion in the RA-FLS HMGB1 siRNA group was significantly lower compared with that in the NC-siRNA group; the MMP-2 and MMP-13 expression levels were also lower. These results showed that MTX reduced HMGB1 expression in RA synovial tissues, and through the downregulation of HMGB1 expression in tissues, MTX may slow disease progression of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Campbell J, Lowe D, Sleeman MA (2011) Developing the next generation of monoclonal antibodies for the treatment of rheumatoid arthritis. Br J Pharmacol 162:1470–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cooles FA, Isaacs JD (2011) Pathophysiology of rheumatoid arthritis. Curr Opin Rheumatol 23:233–240

    Article  CAS  PubMed  Google Scholar 

  3. Kim HY, Park SY, Lee SW et al (2014) Inhibition of HMGB1-induced angiogenesis by cilostazol via SIRT1 activation in synovial fibroblasts from rheumatoid arthritis. PLOS One 9:e104743. doi:10.1371/journal.pone.0104743

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chirico V, Lacquaniti A, Salpietro V et al (2014) High-mobility group box 1 (HMGB1) in childhood: from bench to bedside. Eur J Pediatr 173:1123–1136

    Article  CAS  PubMed  Google Scholar 

  5. Simpson KL, Cawthorne C, Zhou C et al (2013) A caspase-3 ‘death-switch’ in colorectal cancer cells for induced and synchronous tumor apoptosis in vitro and in vivo facilitates the development of minimally invasive cell death biomarkers. Cell Death Dis 4:e163. doi:10.1038/cddis.2013.137

    Article  Google Scholar 

  6. Voll RE, Urbonaviciute V, Herrmann M et al (2008) High mobility group box 1 in the pathogenesis of inflammatory and autoimmune diseases. Isr Med Assoc J 10:26–28

    PubMed  Google Scholar 

  7. Schaper F, Heeringa P, Bijl M et al (2013) Inhibition of high-mobility group box 1 as therapeutic option in autoimmune disease: lessons from animal models. Curr Opin Rheumatol 25:254–259

    Article  CAS  PubMed  Google Scholar 

  8. Musumeci D, Roviello GN, Montesarchio D (2014) An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther 141:347–357

    Article  CAS  PubMed  Google Scholar 

  9. Tang D, Kang R, Livesey KM et al (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takahashi T, Katsuta S, Tamura Y et al (2013) Bone-targeting endogenous secretory receptor for advanced glycation end products rescues rheumatoid arthritis. Mol Med 19:183–194

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cutolo M, Sulli A, Pizzorni C (2001) Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis 60:729–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Combe B, Furst DE, Keystone EC et al (2015) Certolizumab pegol remains an equally efficacious treatment of rheumatoid arthritis over a range of background methotrexate regimens. Arthritis Care Res. doi:10.1002/acr.22676

    Google Scholar 

  13. Link AA, Kino T, Worth JA et al (2000) Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes. J Immunol 164:436–442

    Article  CAS  PubMed  Google Scholar 

  14. Kraan MC, de Koster BM, Elferink JG et al (2000) Inhibition of neutrophil migration soon after initiation of treatment with leflunomide or methotrexate in patients with rheumatoid arthritis: findings in a prospective, randomized, double-blind clinical trial in fifteen patients. Arthritis Rheum 43:1488–1495

    Article  CAS  PubMed  Google Scholar 

  15. Kuroiwa Y, Takakusagi Y, Kusayanagi T et al (2013) Identification and characterization of the direct interaction between methotrexate (MTX) and high-mobility group box 1 (HMGB1) protein. PLoS One 8:e63073. doi:10.1371/journal.pone.0063073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Altman R, Asch E, Bloch D et al (1986) Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 29:1039–1049

    Article  CAS  PubMed  Google Scholar 

  17. Golstein RS (2008) High mobility group box-1 protein as a tumor necrosis factor-independent therapeutictarget in rheumatoid arthritis. Arthritis Res. Ther. 10:111. doi:10.1186/ar2427

    Article  Google Scholar 

  18. Leclerc P, Wähämaa H, Idborg H et al (2013) IL-1beta/HMGB1 complexes promote the PGE2 biosynthesis pathway in synovial fibroblasts. Scand J Immunol 77:350–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Sun W, Gao R et al (2013) The role of high mobility group box chromosomal protein 1 in rheumatoid arthritis. Rheumatol (Oxford) 52:1347–1739

    Article  Google Scholar 

  20. Bossaller L, Rothe A (2013) Monoclonal antibody treatments for rheumatoid arthritis, Expert Opin. Biol Ther 13:1257–1272

    CAS  Google Scholar 

  21. Smith MD, Weedon H, Papangelis V et al (2010) Apoptosis in the rheumatoid arthritis synovial membrane: modulation by disease-modifying anti-rheumatic drug treatment. Rheumatology (Oxford) 45:862–875. doi:10.1093/rheumatology/kep467

    Article  Google Scholar 

  22. Schierbeck H, Pullerits R, Pruunsild C et al (2013) HMGB1 levels are increased in patients with juvenile idiopathic arthritis, correlate with early onset of disease, and are independent of disease duration. J Rheumatol 40(9):1604–1613

    Article  CAS  PubMed  Google Scholar 

  23. Dolhain RJ, Tak PP, Dijkmans BA et al (1998) Methotrexate reduces inflammatory cell numbers, expression of monokines and of adhesion molecules in synovial tissue of patients with rheumatoid arthritis. Br J Rheumatol 37:502–508

    Article  CAS  PubMed  Google Scholar 

  24. Xu K, Cai YS, Lu SM et al (2015) Autophagy induction contributes to the resistance to methotrexate treatment in rheumatoidarthritis fibroblast-like synovial cells through high mobility group box chromosomal protein1. Arthritis Res Ther 17:374. doi:10.1186/s13075-015-0892-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mouterde G, Baillet A, Gaujoux-Viala C et al (2011) Optimizing methotrexate therapy in rheumatoid arthritis: a systematic literature review. Joint Bone Spine 78:587–592

    Article  CAS  PubMed  Google Scholar 

  26. Phillips DC, Woollard KJ, Griffiths HR (2003) The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species[J]. Br J Pharmacol 138(3):501–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Colebatch AN, Marks JL, van der Heijde DM et al (2012) Safety of nonsteroidal antiinflammatory drugs and/or paracetamol in people receiving methotrexate for inflammatory arthritis: a Cochrane systematic review. J Rheumatol 90:62–73

    CAS  Google Scholar 

  28. Gerards AH, Lathouder S, Groot ER et al (2003) Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis. Rheumatology 42:1189–1196

    Article  CAS  PubMed  Google Scholar 

  29. Schierbeck H, Wähämaa H, Andersson U et al (2010) Immunomodulatory drugs regulate HMGB1 release from activated human monocytes. Mol Med 16:343–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang R, Zhang Q, Yang S, Guo Q (2015) TNF-α induces the release of high mobility group protein B1 through p38 mitogen-activated protein kinase pathway in microglia. Zhong Nan Da Xue Xue Bao Yi Xue Ban 40:967–972

    CAS  PubMed  Google Scholar 

  31. Sundberg E, Grundtman C, Af Klint E et al (2008) Systemic TNF blockade does not modulate synovial expression of the pro-inflammatory mediator HMGB1 in rheumatoid arthritis patients—a prospective clinical study. Arthritis Res Ther 10:R33

    Article  PubMed  PubMed Central  Google Scholar 

  32. Park YJ, Chung MK, Hwang D et al (2015) Proteomics in rheumatoid arthritis research. Immune Netw 15:177–185. doi:10.4110/in.2015.15.4.177

    Article  PubMed  PubMed Central  Google Scholar 

  33. Roy K, Kanwar RK, Kanwar JR (2015) Molecular targets in arthritis and recent trends in nanotherapy. Int J Nanomed 10:5407–5420. doi:10.2147/IJN.S89156

    CAS  Google Scholar 

  34. Kim KS, Choi HM, Oh H, da et al (2010) Effect of taurine chloramine on the production of matrix metalloproteinases (MMPs) in adiponectin- or IL-1beta-stimulated fibroblast-like synoviocytes. J Biomed Sci 17(Suppl 1):S27. doi:10.1186/1423-0127-17-S1-S27

    Article  PubMed  PubMed Central  Google Scholar 

  35. He ZW, Qin YH, Wang ZW et al (2013) HMGB1 acts in synergy with lipopolysaccharide in activating rheumatoid synovial fibroblasts via p38 MAPK and NF-kappaB signaling pathways. Mediators Inflamm. doi:10.1155/2013/596716

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the technical advice and the collection of specimens provided by Xi Lan. This work was supported by the National Natural Science Foundations of China (Nos. 81271948 and 81171742).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yb., Xu, P., Xu, K. et al. Methotrexate affects HMGB1 expression in rheumatoid arthritis, and the downregulation of HMGB1 prevents rheumatoid arthritis progression. Mol Cell Biochem 420, 161–170 (2016). https://doi.org/10.1007/s11010-016-2783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2783-1

Keywords

Navigation