Skip to main content
Log in

Growth arrest of lung carcinoma cells (A549) by polyacrylate-anchored peroxovanadate by activating Rac1-NADPH oxidase signalling axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 28 October 2016

Abstract

Hydrogen peroxide is often required in sublethal, millimolar concentrations to show its oxidant effects on cells in culture as it is easily destroyed by cellular catalase. Previously, we had shown that diperoxovanadate, a physiologically stable peroxovanadium compound, can substitute H2O2 effectively in peroxidation reactions. We report here that peroxovanadate when anchored to polyacrylic acid (PAPV) becomes a highly potent inhibitor of growth of lung carcinoma cells (A549). The early events associated with PAPV treatment included cytoskeletal modifications, increase in GTPase activity of Rac1, accumulation of the reactive oxygen species, and also increase in phosphorylation of H2AX (γH2AX), a marker of DNA damage. These effects persisted even at 24 h after removal of the compound and culminated in increased levels of p53 and p21 together with growth arrest. The PAPV-mediated growth arrest was significantly abrogated in cells pre-treated with the N-acetylcysteine, Rac1 knocked down by siRNA and DPI an inhibitor of NADPH oxidase. In conclusion, our results show that polyacrylate derivative of peroxovanadate efficiently arrests growth of A549 cancerous cells by activating the axis of Rac1-NADPH oxidase leading to oxidative stress and DNA damage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PAPV:

Polyacrylate-anchored peroxovanadate

ROS:

Reactive oxygen species

NAC:

N-acetylcysteine

DPI:

Diphenyl iodonium

References

  1. Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176

    Article  CAS  PubMed  Google Scholar 

  2. Raj L, Ide T, Gurkar AU et al (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  CAS  PubMed  Google Scholar 

  4. Aykin-Burns N, Ahmad IM, Zhu Y et al (2009) Increased levels of superoxide and H 2 O 2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 418:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiu C-C, Haung J-W, Chang F-R et al (2013) Golden berry-derived 4β-hydroxywithanolide E for selectively killing oral cancer cells by generating ROS, DNA damage, and apoptotic pathways. PLoS One 8:e64739

    Article  PubMed  PubMed Central  Google Scholar 

  6. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722–728

    Article  CAS  PubMed  Google Scholar 

  7. Barnouin K, Dubuisson ML, Child ES et al (2002) H2O2 induces a transient multi-phase cell cycle arrest in mouse fibroblasts through modulating cyclin D and p21Cip1 expression. J Biol Chem 277:13761–13770

    Article  CAS  PubMed  Google Scholar 

  8. Upadhyay D, Chang W, Wei K et al (2007) Fibroblast growth factor-10 prevents H2O2-induced cell cycle arrest by regulation of G1 cyclins and cyclin dependent kinases. FEBS Lett 581:248–252

    Article  CAS  PubMed  Google Scholar 

  9. Yoshizaki K, Fujiki T, Tsunematsu T et al (2009) Pro-senescent effect of hydrogen peroxide on cancer cells and its possible application to tumor suppression. Biosci Biotechnol Biochem 73:311–315

    Article  CAS  PubMed  Google Scholar 

  10. Guo Y-L, Chakraborty S, Rajan SS et al (2010) Effects of oxidative stress on mouse embryonic stem cell proliferation, apoptosis, senescence, and self-renewal. Stem Cells Dev 19:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yraola F, García-Vicente S, Marti L et al (2007) Understanding the mechanism of action of the novel SSAO substrate (C7NH10)6(V10O28).2H2O, a prodrug of peroxovanadate insulin mimetics. Chem Biol Drug Des 69:423–428

    Article  CAS  PubMed  Google Scholar 

  12. Castan I, Wijkander J, Manganiello V, Degerman E (1999) Mechanisms of inhibition of lipolysis by insulin, vanadate and peroxovanadate in rat adipocytes. Biochem J 339(2):281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Butenko N, Tomaz AI, Nouri O et al (2009) DNA cleavage activity of V IV O(acac)2 and derivatives. J Inorg Biochem 103:622–632

    Article  CAS  PubMed  Google Scholar 

  14. Chatterjee N, Kiran S, Ram BM et al (2011) Diperoxovanadate can substitute for H2O2 at much lower concentration in inducing features of premature cellular senescence in mouse fibroblasts (NIH3T3). Mech Ageing Dev 132:230–239

    Article  CAS  PubMed  Google Scholar 

  15. Boruah JJ, Kalita D, Das SP et al (2011) Polymer-anchored peroxo compounds of vanadium(V) and molybdenum(VI): synthesis, stability, and their activities with alkaline phosphatase and catalase. Inorg Chem 50:8046–8062

    Article  CAS  PubMed  Google Scholar 

  16. Kalita D, Sarmah S, Das SP et al (2008) Synthesis, characterization, reactivity and antibacterial activity of new peroxovanadium (V) complexes anchored to soluble polymers. React Funct Polym 68:876–890

    Article  CAS  Google Scholar 

  17. Khanna V, Jain M, Barthwal MK et al (2011) Vasomodulatory effect of novel peroxovanadate compounds on rat aorta: role of rho kinase and nitric oxide/cGMP pathway. Pharmacol Res 64:274–282

    Article  CAS  PubMed  Google Scholar 

  18. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci 92:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Blandino G, Givol D (1999) Induced p21waf expression in H1299 cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene 18:2643–2649

    Article  CAS  PubMed  Google Scholar 

  20. Knobel PA, Kotov IN, Felley-Bosco E et al (2011) Inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. Neoplasia 13:961–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jo WS, Yang KM, Park HS et al (2012) Effect of Microalgal Extracts of Tetraselmis suecica against UVB-Induced Photoaging in Human Skin Fibroblasts. Toxicol Res 28:241–248

    Article  PubMed  PubMed Central  Google Scholar 

  22. Heasman SJ, Ridley AJ (2008) Mammalian rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701

    Article  CAS  PubMed  Google Scholar 

  23. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  24. Ramasarma T (2012) Emergence of oxyl radicals as selective oxidants. Indian J Biochem Biophys 49:295–305

    CAS  PubMed  Google Scholar 

  25. Sálice VC, Cortizo AM, Gómez Dumm CL, Etcheverry SB (1999) Tyrosine phosphorylation and morphological transformation induced by four vanadium compounds on MC3T3E1 cells. Mol Cell Biochem 198:119–128

    Article  PubMed  Google Scholar 

  26. Srivastava AK, Mehdi MZ (2005) Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet Med 22:2–13

    Article  CAS  PubMed  Google Scholar 

  27. Devasagayam TPA, Boloor KK, Ramasarma T (2003) Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys 40:300–308

    CAS  PubMed  Google Scholar 

  28. Etcheverry SB, Crans DC, Keramidas AD, Cortizo AM (1997) Insulin-mimetic action of vanadium compounds on osteoblast-like cells in culture. Arch Biochem Biophys 338:7–14

    Article  CAS  PubMed  Google Scholar 

  29. Ray RS, Ghosh B, Rana A, Chatterjee M (2007) Suppression of cell proliferation, induction of apoptosis and cell cycle arrest: chemopreventive activity of vanadium in vivo and in vitro. Int J Cancer 120:13–23

    Article  CAS  PubMed  Google Scholar 

  30. Molinuevo MS, Cortizo AM, Etcheverry SB (2008) Vanadium(IV) complexes inhibit adhesion, migration and colony formation of UMR106 osteosarcoma cells. Cancer Chemother Pharmacol 61:767–773

    Article  CAS  PubMed  Google Scholar 

  31. Ferro E, Goitre L, Baldini E et al (2014) Ras GTPases are both regulators and effectors of redox agents. Methods Mol Biol 1120:55–74

    Article  CAS  PubMed  Google Scholar 

  32. Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  33. Price MO, Atkinson SJ, Knaus UG, Dinauer MC (2002) Rac activation induces NADPH oxidase activity in transgenic COS phox cells, and the level of superoxide production is exchange factor-dependent. J Biol Chem 277:19220–19228

    Article  CAS  PubMed  Google Scholar 

  34. Weyemi U, Lagente-Chevallier O, Boufraqech M et al (2012) ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31:1117–1129

    Article  CAS  PubMed  Google Scholar 

  35. Schilder YDC, Heiss EH, Schachner D et al (2009) NADPH oxidases 1 and 4 mediate cellular senescence induced by resveratrol in human endothelial cells. Free Radic Biol Med 46:1598–1606

    Article  CAS  PubMed  Google Scholar 

  36. Lener B, Kozieł R, Pircher H et al (2009) The NADPH oxidase Nox4 restricts the replicative lifespan of human endothelial cells. Biochem J 423:363–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morley N, Curnow A, Salter L et al (2003) N-acetyl-l-cysteine prevents DNA damage induced by UVA, UVB and visible radiation in human fibroblasts. J Photochem Photobiol B 72:55–60

    Article  CAS  PubMed  Google Scholar 

  38. Crabtree RH (2009) C–H bond activation: a radical non-metal solution. Nat Chem 1:348–349

    Article  CAS  PubMed  Google Scholar 

  39. Li T-F, Qin S-H, Ruan X-Z, Wang X (2015) p120-catenin participates in the progress of gastric cancer through regulating the Rac1 and Pak1 signaling pathway. Oncol Rep 34:2357–2364

    PubMed  Google Scholar 

  40. Lee JG, Heur M (2015) WNT10B enhances proliferation through β-catenin and RAC1 GTPase in human corneal endothelial cells. J Biol Chem 290:26752–26764

    Article  CAS  PubMed  Google Scholar 

  41. Espinha G, Osaki JH, Magalhaes YT, Forti FL (2015) Rac1 GTPase-deficient HeLa cells present reduced DNA repair, proliferation, and survival under UV or gamma irradiation. Mol Cell Biochem 404:281–297

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grant from DBT under the North-East Twining program. We thank CDFD and ILBS for providing necessary infrastructure to carry out the work. TA is the recipient of Junior and Senior Research Fellowships of the University Grants Commission towards the pursuit of a PhD degree of the Manipal University. TR is a Hon. Scientist of the Indian National Science Academy, New Delhi.

Authors contribution

GR conceived the concept and designed experiments with NC. All the experiments were performed by NC. TA helped with senescence experiment. TR gave necessary inputs. NI prepared the peroxovanadate. TR, NC, GR wrote the manuscript together.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nirupama Chatterjee or Gayatri Ramakrishna.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11010-016-2844-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, N., Anwar, T., Islam, N.S. et al. Growth arrest of lung carcinoma cells (A549) by polyacrylate-anchored peroxovanadate by activating Rac1-NADPH oxidase signalling axis. Mol Cell Biochem 420, 9–20 (2016). https://doi.org/10.1007/s11010-016-2761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2761-7

Keywords

Navigation