Skip to main content
Log in

Ischemic postconditioning confers cardioprotection and prevents reduction of Trx-1 in young mice, but not in middle-aged and old mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Thioredoxin-1 (Trx-1) is part of an antioxidant system that maintains the cell redox homeostasis but their role on ischemic postconditioning (PostC) is unknown. The aim of this work was to determine whether Trx-1 participates in the cardioprotective mechanism of PostC in young, middle-aged, and old mice. Male FVB young (Y: 3 month-old), middle-aged (MA: 12 month-old), and old (O: 20 month-old) mice were used. Langendorff-perfused hearts were subjected to 30 min of ischemia and 120 min of reperfusion (I/R group). After ischemia, we performed 6 cycles of R/I (10 s each) followed by 120 min of reperfusion (PostC group). We measured the infarct size (triphenyltetrazolium); Trx-1, total and phosphorylated Akt, and GSK3β expression (Western blot); and the GSH/GSSG ratio (HPLC). PostC reduced the infarct size in young mice (I/R-Y: 52.3 ± 2.4 vs. PostC-Y: 40.0 ± 1.9, p < 0.05), but this protection was abolished in the middle-aged and old mice groups. Trx-1 expression decreased after I/R, and the PostC prevented the protein degradation in young animals (I/R-Y: 1.05 ± 0.1 vs. PostC-Y: 0.52 ± .0.07, p < 0.05). These changes were accompanied by an improvement in the GSH/GSSG ratio (I/R-Y: 1.25 ± 0.30 vs. PostC-Y: 7.10 ± 2.10, p < 0.05). However, no changes were observed in the middle-aged and old groups. Cytosolic Akt and GSK3β phosphorylation increased in the PostC compared with the I/R group only in young animals. Our results suggest that PostC prevents Trx-1 degradation, decreasing oxidative stress and allowing the activation of Akt and GSK3β to exert its cardioprotective effect. This protection mechanism is not activated in middle-aged and old animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285(2):H579–H588. doi:10.1152/ajpheart.01064.2002

    Article  CAS  PubMed  Google Scholar 

  2. Buchholz B, Donato M, D’Annunzio V, Gelpi RJ (2014) Ischemic postconditioning: mechanisms, comorbidities, and clinical application. Mol Cell Biochem 392(1–2):1–12. doi:10.1007/s11010-014-2014-6

    Article  CAS  PubMed  Google Scholar 

  3. Donato M, D’Annunzio V, Buchholz B, Miksztowicz V, Carrión CL, Valdez LB, Zaobornyj T, Schreier L, Wikinski R, Boveris A, Berg G, Gelpi RJ (2010) Role of matrix metalloproteinase-2 in the cardioprotective effect of ischaemic postconditioning. Exp Physiol 95(2):274–281. doi:10.1113/expphysiol.2009.049874

    Article  CAS  PubMed  Google Scholar 

  4. Heusch G (2015) Treatment of myocardial ischemia/reperfusion injury by ischemic and pharmacological postconditioning. Compr Physiol 5(3):1123–1145. doi:10.1002/cphy.c140075

    Article  PubMed  Google Scholar 

  5. Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F, Guyton RA, Vinten-Johansen J (2004) Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res 62(1):74–85. doi:10.1016/j.cardiores.2004.01.006

    Article  CAS  PubMed  Google Scholar 

  6. Liu X, Chen H, Zhan B, Xing B, Zhou J, Zhu H, Chen Z (2007) Attenuation of reperfusion injury by renal ischemic postconditioning: the role of NO. Biochem Biophys Res Commun. 359(3):628–634. doi:10.1016/j.bbrc.2007.05.129

    Article  CAS  PubMed  Google Scholar 

  7. Cai M, Li Y, Xu Y, Swartz HM, Chen CL, Chen YR, He G (2011) Endothelial NOS activity and myocardial oxygen metabolism define the salvageable ischemic time window for ischemic postconditioning. Am J Physiol Heart Circ Physiol 300(3):H1069–H1077. doi:10.1152/ajpheart.00694.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwartz LM, Lagranha CJ (2006) Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs. Am J Physiol Heart Circ Physiol 290(3):H1011–H1018. doi:10.1152/ajpheart.00864.200

    Article  CAS  PubMed  Google Scholar 

  9. Iliodromitis EK, Georgiadis M, Cohen MV, Downey JM, Bofilis E, Kremastinos DT (2006) Protection from post-conditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol 101(6):502–507. doi:10.1007/s00395-006-0606-3

    Article  PubMed  Google Scholar 

  10. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116(4):674–699. doi:10.1161/CIRCRESAHA.116.305348

    Article  CAS  PubMed  Google Scholar 

  11. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95(3):230–232. doi:10.1161/01.RES.0000138303.76488.fe

    Article  CAS  PubMed  Google Scholar 

  12. Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15(2):69–75. doi:10.1016/j.tcm.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  13. Buchholz B, Annunzio D, Giani JF, Siachoque N, Dominici FP, Turyn D, Perez V, Donato M, Gelpi RJ (2014) Ischemic postconditioning reduces infarct size through the α1-adrenergic receptor pathway. J Cardiovasc Pharmacol 63(6):504–511. doi:10.1097/FJC.0000000000000074

    Article  CAS  PubMed  Google Scholar 

  14. Aota M, Matsuda K, Isowa N, Wada H, Yodoi J, Ban T (1996) Protection against reperfusion-induced arrhythmias by human thioredoxin. J Cardiovasc Pharmacol 27(5):727–732

    Article  CAS  PubMed  Google Scholar 

  15. Zitta K, Meybohm P, Gruenewald M, Cremer J, Zacharowski KD, Scholz J, Steinfath M, Albrecht M (2015) Profiling of cell stress protein expression in cardiac tissue of cardiosurgical patients undergoing remote ischemic preconditioning: implications for thioredoxin in cardioprotection. J Transl Med. 13:34. doi:10.1186/s12967-015-0403-6

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tao L, Tao E, Bryan NS, Qu Y, Liu HR, Hu A, Christopher TA, Lopez BL, Yodoi J, Koch WJ, Feelisch M, Ma XL (2004) Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation. Proc Natl Acad Sci USA 101(31):11471–11476. doi:10.1073/pnas.0402941101

    Article  PubMed  PubMed Central  Google Scholar 

  17. Du J, Wang Q, Li QM, Zhang BM, Xie KL, Wang GL (2012) Alternation of thioredoxin system in postconditioning with hydrogen sulfide against hepatic ischemia-reperfusion injury in rats. Zhonghua Yi Xue Za Zhi 92(37):2607–2610

    CAS  PubMed  Google Scholar 

  18. Przyklenk K (2011) Efficacy of cardioprotective ‘conditioning’ strategies in aging and diabetic cohorts: the co-morbidity conundrum. Drugs Aging 28(5):331–343. doi:10.2165/11587190-000000000-00000

    Article  PubMed  Google Scholar 

  19. Whittington HJ, Harding I, Stephenson CI, Bell R, Hausenloy DJ, Mocanu MM, Yellon DM (2013) Cardioprotection in the aging, diabetic heart: the loss of protective Akt signalling. Cardiovasc Res 99(4):694–704. doi:10.1093/cvr/cvt140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller RA, Harrison DE, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Strong R (2007) An aging interventions testing program: study design and interim report. Aging Cell 6(4):565–575. doi:10.1111/j.1474-9726.2007.00311.x

    Article  CAS  PubMed  Google Scholar 

  21. Willems L, Zatta A, Holgren K, Ashton KJ, Headrick JP (2005) Age-related changes in ischemic tolerance in male and female mouse hearts. J Mol Cell Cardiol 38(2):245–256. doi:10.1016/j.yjmcc.2004.09.014

    Article  CAS  PubMed  Google Scholar 

  22. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi E (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266. doi:10.1006/abbi.2001.2292

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez-Ariza A, Toribio F, López-Barea J (1994) Rapid determination of glutathione status in fish liver using high-performance liquid chromatography and electrochemical detection. J Chromatogr B Biomed Appl 656:311–318

    Article  CAS  PubMed  Google Scholar 

  24. Braunersreuther V, Montecucco F, Asrih M, Pelli G, Galan K, Frias M, Burger F, Quinderé AL, Montessuit C, Krause KH, Mach F, Jaquet V (2013) Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 64:99–107. doi:10.1016/j.yjmcc.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  25. Inserte J, Hernando V, Vilardosa Ú, Abad E, Poncelas-Nozal M, Garcia-Dorado D (2013) Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc 2(1):e005975. doi:10.1161/JAHA.112.005975

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hausenloy DJ, Mocanu MM, Yellon DM (2004) Cross-talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning. Cardiovasc Res 63(2):305–312. doi:10.1016/j.cardiores.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  27. Turoczi T, Chang VW, Engelman RM, Maulik N, Ho YS, Das DK (2003) Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx-1. J Mol Cell Cardiol 35(6):695–704. doi:10.1016/S0022-2828(03)00117-2

    Article  CAS  PubMed  Google Scholar 

  28. Adluri RS, Thirunavukkarasu M, Zhan L, Akita Y, Samuel SM, Otani H, Ho YS, Maulik G, Maulik N (2011) Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 transgenic mice. J Mol Cell Cardiol 50(1):239–247. doi:10.1016/j.yjmcc.2010.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nishino Y, Webb IG, Davidson SM, Ahmed AI, Clark JE, Jacquet S, Shah AM, Miura T, Yellon DM, Avkiran M, Marber MS (2008) Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ Res 103(3):307–314. doi:10.1161/CIRCRESAHA.107.169953

    Article  CAS  PubMed  Google Scholar 

  30. Zaman J, Jeddi S, Daneshpour MS, Zarkesh M, Daneshian Z, Ghasemi A (2015) Ischemic postconditioning provides cardioprotective and antiapoptotic effects against ischemia-reperfusion injury through iNOS inhibition in hyperthyroid rats. Gene 570(2):185–190. doi:10.1016/j.gene.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  31. Tong G, Aponte AM, Kohr MJ, Steenbergen C, Murphy E, Sun J (2014) Postconditioning leads to an increase in protein S-nitrosylation. Am J Physiol Heart Circ Physiol 306(6):H825–H832. doi:10.1152/ajpheart.00660.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66(4):1142–1174. doi:10.1124/pr.113.008300

    Article  CAS  PubMed  Google Scholar 

  33. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83(2):247–261. doi:10.1093/cvr/cvp033

    Article  CAS  PubMed  Google Scholar 

  34. Abete P, Cioppa A, Calabrese C, Pascucci I, Cacciatore F, Napoli C, Carnovale V, Ferrara N, Rengo F (1999) Ischemic threshold and myocardial stunning in the aging heart. Exp Gerontol 34(7):875–884. doi:10.1016/S0531-5565(99)00060-1

    Article  CAS  PubMed  Google Scholar 

  35. Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R (2007) Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 292(4):H1764–H1769. doi:10.1152/ajpheart.01071.2006

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, Tao L, Jiao X, Gao E, Lopez BL, Christopher TA, Koch W, Ma XL (2007) Nitrative thioredoxin inactivation as a cause of enhanced myocardial ischemia/reperfusion injury in the aging heart. Free Radic Biol Med 43:39–47. doi:10.1016/j.freeradbiomed.2007.03.016

    Article  PubMed  PubMed Central  Google Scholar 

  37. Azhar G, Gao W, Liu L, Wei JY (1999) Ischemia-reperfusion in the adult mouse heart influence of age. Exp Gerontol 34:699–714. doi:10.1016/S0531-5565(99)00031-5

    Article  CAS  PubMed  Google Scholar 

  38. Ashrafian H, Czibik G, Bellahcene M et al (2012) Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab 15:361–367. doi:10.1016/j.cmet.2012.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cohen MV, Yang XM, Neumann T, Heusch G, Downey JM (2000) Favorable remodeling enhances recovery of regional myocardial function in the weeks after infarction in ischemically preconditioned hearts. Circulation 102:579–583. doi:10.1161/01.CIR.102.5.579

    Article  CAS  PubMed  Google Scholar 

  40. Deng C, Sun Z, Tong G, Yi W, Ma L, Zhao B, Cheng L, Zhang J, Cao F, Yi D (2013) α-Lipoic acid reduces infarct size and preserves cardiac function in rat myocardial ischemia/reperfusion injury through activation of PI3 K/Akt/Nrf2 pathway. PLoS One 8(3):e58371. doi:10.1371/journal.pone.0058371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Penna C, Perrelli MG, Tullio F, Angotti C, Camporeale A, Poli V, Pagliaro P (2013) Diazoxide postconditioning induces mitochondrial protein S-nitrosylation and a redox-sensitive mitochondrial phosphorylation/translocation of RISK elements: no role for SAFE. Basic Res Cardiol 108(5):371. doi:10.1007/s00395-013-0371-z

    Article  CAS  PubMed  Google Scholar 

  42. Ravingerová T, Carnická S, Ledvényiová V, Barlaka E, Galatou E, Chytilová A, Mandíková P, Nemčeková M, Adameová A, Kolář F, Lazou A (2013) Upregulation of genes involved in cardiac metabolism enhances myocardial resistance to ischemia/reperfusion in the rat heart. Physiol Res 62(Suppl 1):S151–S163

    PubMed  Google Scholar 

  43. Wang Y, Li X, Wang X, Lau W, Wang Y, Xing Y, Zhang X, Ma X, Gao F (2013) Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway. PLoS One 8(8):e70956. doi:10.1371/journal.pone.0070956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the University of Buenos Aires UBACYT# 20020110100159 and the National Agency for Technological and Scientific Promotion: PICT 0373.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J. Gelpi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal rights statement

All procedures performed in these studies involving animals were in accordance with the ethical standards of the Animal Care and Research Committee of the University of Buenos Aires (CICUAL UBA # 0037016/2012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, V., D´Annunzio, V., Mazo, T. et al. Ischemic postconditioning confers cardioprotection and prevents reduction of Trx-1 in young mice, but not in middle-aged and old mice. Mol Cell Biochem 415, 67–76 (2016). https://doi.org/10.1007/s11010-016-2677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2677-2

Keywords

Navigation