Skip to main content
Log in

Vascular endothelial growth factor-D mediates fibrogenic response in myofibroblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF)-D is a crucial mediator of angiogenesis. Following myocardial infarction (MI), cardiac VEGF-D and VEGF receptor (VEGFR)-3 are significantly upregulated. In addition to endothelial cells, myofibroblasts at the site of MI highly express VEGFR-3, implicating the involvement of VEGF-D in cardiac fibrogenesis that promotes repair and remodeling. The aim of the current study was to further explore the critical role of VEGF-D in fibrogenic response in myofibroblasts. Myofibroblast proliferation, migration, collagen synthesis, and degradation were investigated in cultured cardiac myofibroblasts subjected to VEGF-D with/without VEGFR antagonist or ERK inhibitor. Vehicle-treated cells served as controls. Myofibroblast proliferation and migration were detected by BrdU assay and Boyden Chamber method, respectively. Expression of type I collagen, metalloproteinase (MMP)-2/-9, tissue inhibitor of MMP (TIMP)-1/-2, and ERK phosphorylation were evaluated by Western blot analyses. Our results revealed that compared to controls, (1) VEGF-D significantly increased myofibroblast proliferation and migration; (2) VEGF-D significantly upregulated type I collagen synthesis in a dose- and time-dependent manner; (3) VEGFR antagonist abolished VEGF-D-induced myofibroblast proliferation and type I collagen release; (4) VEGF-D stimulated MMP-2/-9 and TIMP-1/-2 synthesis; (5) VEGF-D activated ERK phosphorylation; and (6) ERK inhibitor abolished VEGF-D-induced myofibroblast proliferation and type I collagen synthesis. Our in vitro studies have demonstrated that VEGF-D serves as a crucial profibrogenic mediator by stimulating myofibroblast growth, migration and collagen synthesis. Further studies are underway to determine the role of VEGF-D in fibrous tissue formation during cardiac repair following MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma Y, de Castro Bras LE, Toba H, Iyer RP, Hall ME, Winniford MD, Lange RA, Tyagi SC, Lindsey ML (2014) Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch 466:1113–1127. doi:10.1007/s00424-014-1463-9

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Sun Y, Weber KT (1996) Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 28:851–858. doi:10.1006/jmcc.1996.0080

    Article  CAS  PubMed  Google Scholar 

  3. Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA, Dimaio JM, Sadek H, Kuwahara K, Olson EN (2010) Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res 107:294–304. doi:10.1161/CIRCRESAHA.110.223172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lijnen PJ, Petrov VV, Fagard RH (2000) Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab 71:418–435. doi:10.1006/mgme.2000.3032

    Article  CAS  PubMed  Google Scholar 

  5. Hao J, Ju H, Zhao S, Junaid A, Scammell-La Fleur T, Dixon IM (1999) Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 31:667–678. doi:10.1006/jmcc.1998.0902

    Article  CAS  PubMed  Google Scholar 

  6. Virag JA, Rolle ML, Reece J, Hardouin S, Feigl EO, Murry CE (2007) Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol 171:1431–1440. doi:10.2353/ajpath.2007.070003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Liu C, Zhao W, Meng W, Zhao T, Chen Y, Ahokas RA, Liu H, Sun Y (2014) Platelet-derived growth factor blockade on cardiac remodeling following infarction. Mol Cell Biochem 397:295–304. doi:10.1007/s11010-014-2197-x

    Article  CAS  PubMed  Google Scholar 

  8. Dean RG, Balding LC, Candido R, Burns WC, Cao Z, Twigg SM, Burrell LM (2005) Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem 53:1245–1256. doi:10.1369/jhc.4A6560.2005

    Article  CAS  PubMed  Google Scholar 

  9. Zhao T, Zhao W, Chen Y, Liu L, Ahokas RA, Sun Y (2013) Differential expression of vascular endothelial growth factor isoforms and receptor subtypes in the infarcted heart. Int J Cardiol 167:2638–2645. doi:10.1016/j.ijcard.2012.06.127

    Article  PubMed Central  PubMed  Google Scholar 

  10. Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239:1573–1584. doi:10.1002/dvdy.22280

    Article  CAS  PubMed  Google Scholar 

  11. Zhao T, Zhao W, Meng W, Liu C, Chen Y, Sun Y (2014) Vascular endothelial growth factor-C: its unrevealed role in fibrogenesis. Am J Physiol Heart Circ Physiol 306:H789–H796. doi:10.1152/ajpheart.00559.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cohen S, Efraim AN, Levi-Schaffer F, Eliashar R (2011) The effect of hypoxia and cyclooxygenase inhibitors on nasal polyp derived fibroblasts. Am J Otolaryngol 32:564–573. doi:10.1016/j.amjoto.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  13. Ferri N, Panariti F, Ricci C, Maiocchi G, Corsini A (2015) Aliskiren inhibits prorenin-induced human aortic smooth muscle cell migration. J Renin Angiotensin Aldosterone Syst 16:284–291. doi:10.1177/1470320314528364

    Article  CAS  PubMed  Google Scholar 

  14. Manso AM, Kang SM, Plotnikov SV, Thievessen I, Oh J, Beggs HE, Ross RS (2009) Cardiac fibroblasts require focal adhesion kinase for normal proliferation and migration. Am J Physiol Heart Circ Physiol 296:H627–H638. doi:10.1152/ajpheart.00444.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Iwasaki T, Mukasa K, Yoneda M, Ito S, Yamada Y, Mori Y, Fujisawa N, Fujisawa T, Wada K, Sekihara H, Nakajima A (2005) Marked attenuation of production of collagen type I from cardiac fibroblasts by dehydroepiandrosterone. Am J Physiol Endocrinol Metab 288:E1222–E1228. doi:10.1152/ajpendo.00370.2004

    Article  CAS  PubMed  Google Scholar 

  16. El Hajj EC, El Hajj MC, Voloshenyuk TG, Mouton AJ, Khoutorova E, Molina PE, Gilpin NW, Gardner JD (2014) Alcohol modulation of cardiac matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs favors collagen accumulation. Alcohol Clin Exp Res 38:448–456. doi:10.1111/acer.12239

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kuo SW, Ke FC, Chang GD, Lee MT, Hwang JJ (2011) Potential role of follicle-stimulating hormone (FSH) and transforming growth factor (TGFbeta1) in the regulation of ovarian angiogenesis. J Cell Physiol 226:1608–1619. doi:10.1002/jcp.22491

    Article  CAS  PubMed  Google Scholar 

  18. Kazenwadel J, Secker GA, Betterman KL, Harvey NL (2012) In vitro assays using primary embryonic mouse lymphatic endothelial cells uncover key roles for FGFR1 signalling in lymphangiogenesis. PLoS One 7:e40497. doi:10.1371/journal.pone.0040497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Braun OO, Lu D, Aroonsakool N, Insel PA (2010) Uridine triphosphate (UTP) induces profibrotic responses in cardiac fibroblasts by activation of P2Y2 receptors. J Mol Cell Cardiol 49:362–369. doi:10.1016/j.yjmcc.2010.05.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Peterson DJ, Ju H, Hao J, Panagia M, Chapman DC, Dixon IM (1999) Expression of Gi-2 alpha and Gs alpha in myofibroblasts localized to the infarct scar in heart failure due to myocardial infarction. Cardiovasc Res 41:575–585

    Article  CAS  PubMed  Google Scholar 

  21. Brenmoehl J, Miller SN, Hofmann C, Vogl D, Falk W, Scholmerich J, Rogler G (2009) Transforming growth factor-beta 1 induces intestinal myofibroblast differentiation and modulates their migration. World J Gastroenterol 15:1431–1442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R, Horowitz JC, Day RM, Thomas PE (2003) Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 278:12384–12389. doi:10.1074/jbc.M208544200

    Article  CAS  PubMed  Google Scholar 

  23. Sato M, Hirayama S, Lara-Guerra H, Anraku M, Waddell TK, Liu M, Keshavjee S (2009) MMP-dependent migration of extrapulmonary myofibroblast progenitors contributing to posttransplant airway fibrosis in the lung. Am J Transplant 9:1027–1036. doi:10.1111/j.1600-6143.2009.02605.x

    Article  CAS  PubMed  Google Scholar 

  24. Kernochan LE, Tran BN, Tangkijvanich P, Melton AC, Tam SP, Yee HF Jr (2002) Endothelin-1 stimulates human colonic myofibroblast contraction and migration. Gut 50:65–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 11:1223–1230

    Article  CAS  PubMed  Google Scholar 

  26. Lindsey ML, Zamilpa R (2012) Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 30:31–41. doi:10.1111/j.1755-5922.2010.00207.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Roy H, Bhardwaj S, Yla-Herttuala S (2006) Biology of vascular endothelial growth factors. FEBS Lett 580:2879–2887. doi:10.1016/j.febslet.2006.03.087

    Article  CAS  PubMed  Google Scholar 

  28. Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563. doi:10.1016/j.cardiores.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  29. Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C, Muller G (2001) TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int 59:579–592. doi:10.1046/j.1523-1755.2001.059002579.x

    Article  CAS  PubMed  Google Scholar 

  30. Clark RA, McCoy GA, Folkvord JM, McPherson JM (1997) TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. J Cell Physiol 170:69–80. doi:10.1002/(SICI)1097-4652(199701)170:1<69:AID-JCP8>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  31. Peng H, Carretero OA, Peterson EL, Rhaleb NE (2010) Ac-SDKP inhibits transforming growth factor-beta1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Am J Physiol Heart Circ Physiol 298:H1357–H1364. doi:10.1152/ajpheart.00464.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Leeb SN, Vogl D, Falk W, Scholmerich J, Rogler G, Gelbmann CM (2002) Regulation of migration of human colonic myofibroblasts. Growth Factors 20:81–91

    Article  CAS  PubMed  Google Scholar 

  33. Yanagawa T, Shinozaki T, Watanabe H, Saito K, Raz A, Takagishi K (2012) Vascular endothelial growth factor-D is a key molecule that enhances lymphatic metastasis of soft tissue sarcomas. Exp Cell Res 318:800–808. doi:10.1016/j.yexcr.2012.01.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Narasimhan P, Liu J, Song YS, Massengale JL, Chan PH (2009) VEGF Stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40:1467–1473. doi:10.1161/STROKEAHA.108.534644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Yeh CC, Li H, Malhotra D, Turcato S, Nicholas S, Tu R, Zhu BQ, Cha J, Swigart PM, Myagmar BE, Baker AJ, Simpson PC, Mann MJ (2010) Distinctive ERK and p38 signaling in remote and infarcted myocardium during post-MI remodeling in the mouse. J Cell Biochem 109:1185–1191. doi:10.1002/jcb.22498

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Heart, Blood, and Lung Institute (1RO1-HL096503, Yao Sun).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Sun.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Zhao, W., Meng, W. et al. Vascular endothelial growth factor-D mediates fibrogenic response in myofibroblasts. Mol Cell Biochem 413, 127–135 (2016). https://doi.org/10.1007/s11010-015-2646-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2646-1

Keywords

Navigation