Skip to main content
Log in

Ascorbic acid prevents VEGF-induced increases in endothelial barrier permeability

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF) increases endothelial barrier permeability, an effect that may contribute to macular edema in diabetic retinopathy. Since vitamin C, or ascorbic acid, can tighten the endothelial permeability barrier, we examined whether it could prevent the increase in permeability due to VEGF in human umbilical vein endothelial cells (HUVECs). As previously observed, VEGF increased HUVEC permeability to radiolabeled inulin within 60 min in a concentration-dependent manner. Loading the cells with increasing concentrations of ascorbate progressively prevented the leakage caused by 100 ng/ml VEGF, with a significant inhibition at 13 µM and complete inhibition at 50 µM. Loading cells with 100 µM ascorbate also decreased the basal generation of reactive oxygen species and prevented the increase caused by both 100 ng/ml VEGF. VEGF treatment decreased intracellular ascorbate by 25 %, thus linking ascorbate oxidation to its prevention of VEGF-induced barrier leakage. The latter was blocked by treating the cells with 60 µM L-NAME (but not D-NAME) as well as by 30 µM sepiapterin, a precursor of tetrahydrobiopterin that is required for proper function of endothelial nitric oxide synthase (eNOS). These findings suggest that VEGF-induced barrier leakage uncouples eNOS. Ascorbate inhibition of the VEGF effect could thus be due either to scavenging superoxide or to peroxynitrite generated by the uncoupled eNOS, or more likely to its ability to recycle tetrahydrobiopterin, thus avoiding enzyme uncoupling in the first place. Ascorbate prevention of VEGF-induced increases in endothelial permeability opens the possibility that its repletion could benefit diabetic macular edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

D-NAME:

N ω-nitro-d-arginine methyl ester hydrochloride

eNOS:

Endothelial nitric oxide synthase

Hepes:

N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid

KRH:

Krebs–Ringer Hepes

L-NAME:

N ω-nitro-l-arginine methyl ester hydrochloride

NO:

Nitric oxide

ROS/RNS:

Reactive oxygen and nitrogen species

VEGF:

Vascular endothelial growth factor

References

  1. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    Article  PubMed  CAS  Google Scholar 

  2. Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108(Pt 6):2369–2379

    PubMed  CAS  Google Scholar 

  3. Marumo T, Noll T, Schini-Kerth VB, Harley EA, Duhault J, Piper HM, Busse R (1999) Significance of nitric oxide and peroxynitrite in permeability changes of the retinal microvascular endothelial cell monolayer induced by vascular endothelial growth factor. J Vasc Res 36:510–515

    Article  PubMed  CAS  Google Scholar 

  4. Hippenstiel S, Krull M, Ikemann A, Risau W, Clauss M, Suttorp N (1998) VEGF induces hyperpermeability by a direct action on endothelial cells. Am J Physiol 274:L678–L684

    PubMed  CAS  Google Scholar 

  5. Wang W, Merrill MJ, Borchardt RT (1996) Vascular endothelial growth factor affects permeability of brain microvessel endothelial cells in vitro. Am J Physiol 271:C1973–C1980

    PubMed  CAS  Google Scholar 

  6. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140:947–959

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Feng Y, Venema VJ, Venema RC, Tsai N, Behzadian MA, Caldwell RB (1999) VEGF-induced permeability increase is mediated by caveolae. Investig Ophthalmol Vis Sci 40:157–167

    CAS  Google Scholar 

  8. Chen J, Braet F, Brodsky S, Weinstein T, Romanov V, Noiri E, Goligorsky MS (2002) VEGF-induced mobilization of caveolae and increase in permeability of endothelial cells. Am J Physiol Cell Physiol 282:C1053–C1063

    Article  PubMed  CAS  Google Scholar 

  9. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8:1223–1234

    Article  PubMed  CAS  Google Scholar 

  10. Murakami T, Felinski EA, Antonetti DA (2009) Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem 284:21036–21046

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Han J, Shuvaev VV, Muzykantov VR (2011) Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor. J Pharmacol Exp Ther 338:82–91

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D, Sullivan A, Isner JM (1998) Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97:99–107

    Article  PubMed  CAS  Google Scholar 

  13. Breslin JW, Pappas PJ, Cerveira JJ, Hobson RW, Duran WN (2003) VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. Am J Physiol Heart Circ Physiol 284:H92–H100

    Article  PubMed  CAS  Google Scholar 

  14. May JM, Qu ZC (2010) Ascorbic acid prevents increased endothelial permeability caused by oxidized low density lipoprotein. Free Radic Res 44:1359–1368

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Parker WH, Qu ZC, May JM (2015) Intracellular ascorbate prevents endothelial barrier permeabilization by thrombin. J Biol Chem 290:21486–21497

    Article  PubMed  CAS  Google Scholar 

  16. May JM, Qu ZC (2011) Nitric oxide mediates tightening of the endothelial barrier by ascorbic acid. Biochem Biophys Res Commun 404:701–705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER (2001) L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem 276:40–47

    Article  PubMed  CAS  Google Scholar 

  18. Moy AB, Bodmer JE, Blackwell K, Shasby S, Shasby DM (1998) cAMP protects endothelial barrier function independent of inhibiting MLC20-dependent tension development. Am J Physiol 274:L1024–L1029

    PubMed  CAS  Google Scholar 

  19. Stelzner TJ, Weil JV, O’Brien RF (1989) Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. J Cell Physiol 139:157–166

    Article  PubMed  CAS  Google Scholar 

  20. Yamada Y, Furumichi T, Furui H, Yokoi T, Ito T, Yamauchi K, Yokota M, Hayashi H, Saito H (1990) Roles of calcium, cyclic nucleotides, and protein kinase C in regulation of endothelial permeability. Arteriosclerosis 10:410–420

    Article  PubMed  CAS  Google Scholar 

  21. May JM, Qu Z-C, Mendiratta S (1998) Protection and recycling of α-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch Biochem Biophys 349:281–289

    Article  PubMed  CAS  Google Scholar 

  22. Hardy TA, May JM (2002) Coordinate regulation of l-arginine uptake and nitric oxide synthase activity in cultured endothelial cells. Free Radic Biol Med 32:122–131

    Article  PubMed  CAS  Google Scholar 

  23. Jones W, Li X, Perriott LM, Whitesell RR, May JM (2002) Uptake, recycling, and antioxidant functions of α-lipoic acid in endothelial cells. Free Radic Biol Med 33:83–93

    Article  PubMed  CAS  Google Scholar 

  24. May JM, Qu ZC, Qiao H (2009) Transfer of ascorbic acid across the vascular endothelium: mechanism and self-regulation. Am J Physiol Cell Physiol 297:C169–C178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Siflinger-Birnboim A, del Vecchio PJ, Cooper JA, Blumenstock FA, Shepard JM, Malik AB (1987) Molecular sieving characteristics of the cultured endothelial monolayer. J Cell Physiol 132:111–117

    Article  PubMed  CAS  Google Scholar 

  26. Utoguchi N, Ikeda K, Saeki K, Oka N, Mizuguchi H, Kubo K, Nakagawa S, Mayumi T (1995) Ascorbic acid stimulates barrier function of cultured endothelial cell monolayer. J Cell Physiol 163:393–399

    Article  PubMed  CAS  Google Scholar 

  27. Bergsten P, Amitai G, Kehrl J, Dhariwal KR, Klein HG, Levine M (1990) Millimolar concentrations of ascorbic acid in purified human mononuclear leukocytes. Depletion and reaccumulation. J Biol Chem 265:2584–2587

    PubMed  CAS  Google Scholar 

  28. May JM, Qu ZC (2009) Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate. Mol Cell Biochem 325:79–88

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Jackson TS, Xu AM, Vita JA, Keaney JF Jr (1998) Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ Res 83:916–922

    Article  PubMed  CAS  Google Scholar 

  30. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2003) Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols—implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 278:22546–22554

    Article  PubMed  CAS  Google Scholar 

  31. El-Remessy AB, Al-Shabrawey M, Platt DH, Bartoli M, Behzadian MA, Ghaly N, Tsai N, Motamed K, Caldwell RB (2007) Peroxynitrite mediates VEGF’s angiogenic signal and function via a nitration-independent mechanism in endothelial cells. FASEB J 21:2528–2539

    Article  PubMed  CAS  Google Scholar 

  32. Brock TA, Dvorak HF, Senger DR (1991) Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells. Am J Pathol 138:213–221

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Hamdollah Zadeh MA, Glass CA, Magnussen A, Hancox JC, Bates DO (2008) VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation 15:605–614

    Article  PubMed  CAS  Google Scholar 

  34. Abbate M, Cravedi P, Iliev I, Remuzzi G, Ruggenenti P (2011) Prevention and treatment of diabetic retinopathy: evidence from clinical trials and perspectives. Curr Diabetes Rev 7:190–200

    Article  PubMed  CAS  Google Scholar 

  35. Barba I, Garcia-Ramirez M, Hernandez C, Alonso MA, Masmiquel L, Garcia-Dorado D, Simo R (2010) Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Investig Ophthalmol Vis Sci 51:4416–4421

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant DK050435 and by the Cell Culture Core of the Vanderbilt Diabetes Research and Training Center (DK020593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. May.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulker, E., Parker, W.H., Raj, A. et al. Ascorbic acid prevents VEGF-induced increases in endothelial barrier permeability. Mol Cell Biochem 412, 73–79 (2016). https://doi.org/10.1007/s11010-015-2609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2609-6

Keywords

Navigation