Skip to main content
Log in

MicroRNA21 promotes interstitial fibrosis via targeting DDAH1: a potential role in renal fibrosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Scarring of the kidney directly promotes loss of kidney function. A thorough understanding of renal fibrosis at the molecular level is urgently needed. One prominent microRNA, miR-21, was previously reported to be up-regulated in renal fibrosis, but its mechanism is unclear. In the present study, an unbiased search for downstream messenger RNA targets of miR-21 using the HK-2 human tubular epithelial cell line was performed. Effects of the target gene in renal fibrosis and underlying mechanism were explored. Results show that forced expression of miR-21 significantly increased cell apoptosis, interstitial deposition, and decreased E-cadherin level of the HK-2 cells. Conversely, inhibition of miR-21 promoted the opposite effects. We identified that miR-21 directly interacted with the 3′-untranslated region of the suppressor of dimethylarginine dimethylaminohydrolase 1 (DDAH1) by dual-luciferase assay. Moreover, pcDNA3.1-DDAH1 pretreatment could effectively reduce α-SMA, collagen I, fibronectin expression, and promoted E-cadherin expression, as well as inhibiting HK-2 cell apoptosis, while all those effects can be attenuated by pretreatment with the Wnt/β-catenin signaling activator Licl. Taken together, our results suggest that miR-21 may regulate renal fibrosis by the Wnt pathway via directly targeting DDAH1. Therefore, this study may provide novel strategies for the development of renal fibrosis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DDAH1:

Dimethylarginine dimethylaminohydrolase 1

CKD:

Chronic kidney disease

ESRD:

End-stage renal disease

miRs:

microRNAs

RISC:

RNA-induced silencing complex

UUO:

Unilateral ureteral obstruction

ADMA:

Asymmetric dimethylarginine

HK-2:

Human tubular epithelial cells

References

  1. Genovese F, Manresa AA, Leeming DJ, Karsdal MA, Boor P (2014) The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenes Tissue Repair 7(1):4

    Article  Google Scholar 

  2. Yamanaka S, Olaru AV, An F, Luvsanjav D, Jin Z, Agarwal R, Tomuleasa C, Popescu I, Alexandrescu S, Dima S (2012) MicroRNA-21 inhibits Serpini1, a gene with novel tumour suppressive effects in gastric cancer. Digest Liver Dis 44:589–596

    Article  CAS  Google Scholar 

  3. Macconi D, Tomasoni S, Romagnani P, Trionfini P, Sangalli F, Mazzinghi B, Rizzo P, Lazzeri E, Abbate M, Remuzzi G (2012) MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition. J Am Soc Nephrol 23:1496–1505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Cho WC (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 6:60

    Article  PubMed Central  PubMed  Google Scholar 

  5. Zaman MS, Shahryari V, Deng G, Thamminana S, Saini S, Majid S, Chang I, Hirata H, Ueno K, Yamamura S (2012) Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS One 7:e31060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Zhong X, Chung AC, Chen H-Y, Meng X-M, Lan HY (2011) Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 22:1668–1681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zhou X, Zhang J, Jia Q, Ren Y, Wang Y, Shi L, Liu N, Wang G, Pu P, You Y (2010) Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncol Rep 24:195–201

    Article  CAS  PubMed  Google Scholar 

  8. Li T, Li D, Sha J, Sun P, Huang Y (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383:280–285

    Article  CAS  PubMed  Google Scholar 

  9. Siervo M, Corander M, Stranges S, Bluck L (2011) Post-challenge hyperglycaemia, nitric oxide production and endothelial dysfunction: the putative role of asymmetric dimethylarginine (ADMA). Nutr Metab Cardiovasc 21:1–10

    Article  CAS  Google Scholar 

  10. Shibata R, Ueda S, S-i Yamagishi, Kaida Y, Matsumoto Y, Fukami K, Hayashida A, Matsuoka H, Kato S, Kimoto M (2009) Involvement of asymmetric dimethylarginine (ADMA) in tubulointerstitial ischaemia in the early phase of diabetic nephropathy. Nephrol Dial Transpl 24:1162–1169

    Article  CAS  Google Scholar 

  11. Matsumoto Y, Ueda S, S-i Yamagishi, Matsuguma K, Shibata R, Fukami K, Matsuoka H, Imaizumi T, Okuda S (2007) Dimethylarginine dimethylaminohydrolase prevents progression of renal dysfunction by inhibiting loss of peritubular capillaries and tubulointerstitial fibrosis in a rat model of chronic kidney disease. J Am Soc Nephrol 18:1525–1533

    Article  CAS  PubMed  Google Scholar 

  12. Xue H, Xiao Z, Zhang J, Wen J, Wang Y, Chang Z, Zhao J, Gao X, Du J, Chen YG (2013) Disruption of the Dapper3 gene aggravates ureteral obstruction-mediated renal fibrosis by amplifying Wnt/beta-catenin signaling. J Biol Chem 288:15006–15014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Foley RN, Collins AJ (2013) The USRDS: what you need to know about what it can and can’t tell us about ESRD. Clin J Am Soc Nephro 8:845–851

    Article  Google Scholar 

  14. Tampe B, Zeisberg M (2013) Contribution of genetics and epigenetics to progression of kidney fibrosis. Nephrol Dial Transpl. doi:10.1093/ndt/gft025

    Google Scholar 

  15. Marti H-P, Fuscoe JC, Kwekel JC, Anagnostopoulou A, Scherer A (2014) Metzincins and related genes in experimental renal ageing: towards a unifying fibrosis classifier across species. Nephrol Dial Transpl 29:1177–1185

    Article  CAS  Google Scholar 

  16. Liu N, Jiang N, Guo R, Jiang W, He Q-M, Xu Y-F, Li Y-Q, Tang L-L, Mao Y-P, Sun Y (2013) MiR-451 inhibits cell growth and invasion by targeting MIF and is associated with survival in nasopharyngeal carcinoma. Mol Cancer 12:123

    Article  PubMed Central  PubMed  Google Scholar 

  17. Qin W, Chung AC, Huang XR, Meng X-M, Hui DS, Yu C-M, Sung JJ, Lan HY (2011) TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephro 22:1462–1474

    Article  CAS  Google Scholar 

  18. Sun L, Zhang D, Liu F, Xiang X, Ling G, Xiao L, Liu Y, Zhu X, Zhan M, Yang Y (2011) Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. J Pathol 225:364–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lorenzen JM, Haller H, Thum T (2011) MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol 7:286–294

    Article  CAS  PubMed  Google Scholar 

  20. Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G, Li J, Tran PT, Kaimal V, Huang X (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4(121):121ra118

    Article  Google Scholar 

  21. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ueda S, S-i Yamagishi, Yokoro M, Okuda S (2014) Role of asymmetric dimethylarginine in cardiorenal syndrome. Curr Pharm Design 20:2448–2455

    Article  CAS  Google Scholar 

  23. Aldamiz-Echevarria L, Andrade F (2012) Asymmetric dimethylarginine, endothelial dysfunction and renal disease. Int J Mol Sci 13:11288–11311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Schwedhelm E, Böger RH (2011) The role of asymmetric and symmetric dimethylarginines in renal disease. Nat Rev Nephrol 7:275–285

    Article  CAS  PubMed  Google Scholar 

  25. Nakayama Y, Ueda S, S-i Yamagishi, Obara N, Taguchi K, Ando R, Kaida Y, Iwatani R, Kaifu K, Yokoro M (2014) Asymmetric dimethylarginine accumulates in the kidney during ischemia/reperfusion injury. Kidney Int 85:570–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Schnaper HW (2014) Remnant nephron physiology and the progression of chronic kidney disease. Pediatr Nephrol 29:193–202

    Article  PubMed  Google Scholar 

  27. Xie XS, Li FY, Liu HC, Deng Y, Li Z, Fan JM (2010) LSKL, a peptide antagonist of thrombospondin-1, attenuates renal interstitial fibrosis in rats with unilateral ureteral obstruction. Arch Pharm Res 33:275–284

    Article  CAS  PubMed  Google Scholar 

  28. Butz H, Szabo PM, Nofech-Mozes R, Rotondo F, Kovacs K, Mirham L, Girgis H, Boles D, Patocs A, Yousef GM (2014) Integrative bioinformatics analysis reveals new prognostic biomarkers of clear cell renal cell carcinoma. Clin Chem 60:1314–1326

    Article  CAS  PubMed  Google Scholar 

  29. Kohn KW, Zeeberg BM, Reinhold WC, Pommier Y (2014) Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype. PLoS One 9:e99269

    Article  PubMed Central  PubMed  Google Scholar 

  30. Roderick J, Tan DZ, Zhou Lili, Liu Youhua (2014) Wnt/b-catenin signaling and kidney fibrosis. Kidney Int Suppl 4:84–90

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of China (No. 81260114) and the Natural Science Foundation Project of Jiangxi Province (No. 20142BAB205007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Juan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Xiu-Juan Liu and Quan Hong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XJ., Hong, Q., Wang, Z. et al. MicroRNA21 promotes interstitial fibrosis via targeting DDAH1: a potential role in renal fibrosis. Mol Cell Biochem 411, 181–189 (2016). https://doi.org/10.1007/s11010-015-2580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2580-2

Keywords

Navigation