Skip to main content
Log in

RC3/neurogranin negatively regulates extracellular signal-regulated kinase pathway through its interaction with Ras

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

RC3/neurogranin is a postsynaptic protein and plays pivotal roles in spatial learning and emotional anxiety as well as synaptic plasticity. The expression level of RC3 is dynamically changed during developmental stages, but the function of RC3 in brain development is not well understood yet. Neurotrophins interact with tropomyosin-related kinase receptors to activate Ras–extracellular signal-regulated kinase (ERK) pathway and can also induce neuronal differentiation. In this study, we demonstrate that RC3 inhibits Ras–ERK pathway by interaction with Ras and controls neurite outgrowth induced by neurotrophins. In PC12 cells, RC3 inhibits nerve growth factor (NGF)-induced activation of Ras and thereby ERK1/2 signaling cascade as well as neurite outgrowth induced by NGF. We found Ras is the target of the inhibitory function of RC3, because RC3 interacts with Ras and suppresses the elevated affinity of Ras to Ras-binding domain of Raf-1. Meanwhile, already activated Raf-1 by Ras activity is not affected by RC3. Furthermore, depletion of RC3 by RNA interference drastically enhances the stimulation of ERK1/2 and neurite outgrowth induced by brain-derived neurotrophic factor in hippocampal neurons. These findings suggest that RC3 is a novel natural inhibitor of Ras-ERK1/2 signaling axis, leading to negatively regulate neuronal differentiation induced by neurotrophins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14:2919–2937

    Article  CAS  PubMed  Google Scholar 

  2. Hempstead BL (2006) Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res 3:19–24

    Article  CAS  PubMed  Google Scholar 

  3. Kaplan DR, Miller FD (1997) Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 9:213–221

    Article  CAS  PubMed  Google Scholar 

  4. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564. doi:10.1098/rstb.2006.1894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Segal RA, Greenberg ME (1996) Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci 19:463–489

    Article  CAS  PubMed  Google Scholar 

  6. Seidah NG, Benjannet S, Pareek S, Chretien M, Murphy RA (1996) Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett 379:247–250

    Article  CAS  PubMed  Google Scholar 

  7. Seidah NG, Benjannet S, Pareek S, Savaria D, Hamelin J, Goulet B, Laliberte J, Lazure C, Chretien M, Murphy RA (1996) Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem J 314(3):951–960

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Friedman WJ, Greene LA (1999) Neurotrophin signaling via Trks and p75. Exp Cell Res 253:131–142

    Article  CAS  PubMed  Google Scholar 

  9. Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280

    Article  CAS  PubMed  Google Scholar 

  10. Bamji SX, Majdan M, Pozniak CD, Belliveau DJ, Aloyz R, Kohn J, Causing CG, Miller FD (1998) The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol 140:911–923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Barrett GL, Bartlett PF (1994) The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc Natl Acad Sci USA 91:6501–6505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wiese S, Metzger F, Holtmann B, Sendtner M (1999) The role of p75NTR in modulating neurotrophin survival effects in developing motoneurons. Eur J Neurosci 11:1668–1676

    Article  CAS  PubMed  Google Scholar 

  13. Ultsch MH, Wiesmann C, Simmons LC, Henrich J, Yang M, Reilly D, Bass SH, de Vos AM (1999) Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. J Mol Biol 290:149–159. doi:10.1006/jmbi.1999.2816

    Article  CAS  PubMed  Google Scholar 

  14. Urfer R, Tsoulfas P, O’Connell L, Hongo JA, Zhao W, Presta LG (1998) High resolution mapping of the binding site of TrkA for nerve growth factor and TrkC for neurotrophin-3 on the second immunoglobulin-like domain of the Trk receptors. J Biol Chem 273:5829–5840

    Article  CAS  PubMed  Google Scholar 

  15. Wiesmann C, Ultsch MH, Bass SH, de Vos AM (1999) Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature 401:184–188. doi:10.1038/43705

    Article  CAS  PubMed  Google Scholar 

  16. Moodie SA, Willumsen BM, Weber MJ, Wolfman A (1993) Complexes of Ras. GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260:1658–1661

    Article  CAS  PubMed  Google Scholar 

  17. Van Aelst L, Barr M, Marcus S, Polverino A, Wigler M (1993) Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci USA 90:6213–6217

    Article  PubMed Central  PubMed  Google Scholar 

  18. Vojtek AB, Hollenberg SM, Cooper JA (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214

    Article  CAS  PubMed  Google Scholar 

  19. Grewal SS, York RD, Stork PJ (1999) Extracellular-signal-regulated kinase signalling in neurons. Curr Opin Neurobiol 9:544–553

    Article  CAS  PubMed  Google Scholar 

  20. Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem 11:172–178

    Article  PubMed Central  PubMed  Google Scholar 

  21. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mertz K, Koscheck T, Schilling K (2000) Brain-derived neurotrophic factor modulates dendritic morphology of cerebellar basket and stellate cells: an in vitro study. Neuroscience 97:303–310

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA (1997) Abnormal cerebellar development and foliation in BDNF-/- mice reveals a role for neurotrophins in CNS patterning. Neuron 19:269–281

    Article  CAS  PubMed  Google Scholar 

  24. Baudier J, Bronner C, Kligman D, Cole RD (1989) Protein kinase C substrates from bovine brain. Purification and characterization of neuromodulin, a neuron-specific calmodulin-binding protein. J Biol Chem 264:1824–1828

    CAS  PubMed  Google Scholar 

  25. Gerendasy DD, Sutcliffe JG (1997) RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes. Mol Neurobiol 15:131–163

    Article  CAS  PubMed  Google Scholar 

  26. Watson JB, Battenberg EF, Wong KK, Bloom FE, Sutcliffe JG (1990) Subtractive cDNA cloning of RC3, a rodent cortex-enriched mRNA encoding a novel 78 residue protein. J Neurosci Res 26:397–408

    Article  CAS  PubMed  Google Scholar 

  27. Alvarez-Bolado G, Rodriguez-Sanchez P, Tejero-Diez P, Fairen A, Diez-Guerra FJ (1996) Neurogranin in the development of the rat telencephalon. Neuroscience 73:565–580

    Article  CAS  PubMed  Google Scholar 

  28. Represa A, Deloulme JC, Sensenbrenner M, Ben-Ari Y, Baudier J (1990) Neurogranin: immunocytochemical localization of a brain-specific protein kinase C substrate. J Neurosci 10:3782–3792

    CAS  PubMed  Google Scholar 

  29. Gerendasy DD, Herron SR, Watson JB, Sutcliffe JG (1994) Mutational and biophysical studies suggest RC3/neurogranin regulates calmodulin availability. J Biol Chem 269:22420–22426

    CAS  PubMed  Google Scholar 

  30. Huang KP, Huang FL, Chen HC (1993) Characterization of a 7.5-kDa protein kinase C substrate (RC3 protein, neurogranin) from rat brain. Arch Biochem Biophys 305:570–580

    Article  CAS  PubMed  Google Scholar 

  31. Huang KP, Huang FL, Jager T, Li J, Reymann KG, Balschun D (2004) Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J Neurosci 24:10660–10669. doi:10.1523/JNEUROSCI.2213-04.2004

    Article  CAS  PubMed  Google Scholar 

  32. Pak JH, Huang FL, Li J, Balschun D, Reymann KG, Chiang C, Westphal H, Huang KP (2000) Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. Proc Natl Acad Sci USA 97:11232–11237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Zhabotinsky AM, Camp RN, Epstein IR, Lisman JE (2006) Role of the neurogranin concentrated in spines in the induction of long-term potentiation. J Neurosci 26:7337–7347. doi:10.1523/JNEUROSCI.0729-06.2006

    Article  CAS  PubMed  Google Scholar 

  34. Zhong L, Cherry T, Bies CE, Florence MA, Gerges NZ (2009) Neurogranin enhances synaptic strength through its interaction with calmodulin. EMBO J 28:3027–3039. doi:10.1038/emboj.2009.236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Zhong L, Gerges NZ (2012) Neurogranin targets calmodulin and lowers the threshold for the induction of long-term potentiation. PLoS One 7:e41275. doi:10.1371/journal.pone.0041275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Miyakawa T, Yared E, Pak JH, Huang FL, Huang KP, Crawley JN (2001) Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components. Hippocampus 11:763–775. doi:10.1002/hipo.1092

    Article  CAS  PubMed  Google Scholar 

  37. Higo N, Oishi T, Yamashita A, Murata Y, Matsuda K, Hayashi M (2006) Northern blot and in situ hybridization analyses for the neurogranin mRNA in the developing monkey cerebral cortex. Brain Res 1078:35–48. doi:10.1016/j.brainres.2006.01.062

    Article  CAS  PubMed  Google Scholar 

  38. Larouche M, Che PM, Hawkes R (2006) Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J Comp Neurol 494:215–227. doi:10.1002/cne.20791

    Article  CAS  PubMed  Google Scholar 

  39. Herrmann C, Martin GA, Wittinghofer A (1995) Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J Biol Chem 270:2901–2905

    Article  CAS  PubMed  Google Scholar 

  40. Hwang HS, Hwang SG, Cho JH, Chae JS, Yoon KW, Cho SG, Choi EJ (2011) CIIA functions as a molecular switch for the Rac1-specific GEF activity of SOS1. J Cell Biol 195:377–386. doi:10.1083/jcb.201106138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hwang HS, Hwang SG, Yoon KW, Yoon JH, Roh KH, Choi EJ (2014) CIIA negatively regulates the Ras-Erk1/2 signaling pathway through inhibiting the Ras-specific GEF activity of SOS1. J Cell Sci 127:1640–1646. doi:10.1242/jcs.139931

    Article  CAS  PubMed  Google Scholar 

  42. Klesse LJ, Meyers KA, Marshall CJ, Parada LF (1999) Nerve growth factor induces survival and differentiation through two distinct signaling cascades in PC12 cells. Oncogene 18:2055–2068

    Article  CAS  PubMed  Google Scholar 

  43. Pang L, Sawada T, Decker SJ, Saltiel AR (1995) Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J Biol Chem 270:13585–13588

    Article  CAS  PubMed  Google Scholar 

  44. McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803

    Article  CAS  PubMed  Google Scholar 

  45. da Silva JS, Dotti CG (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3:694–704. doi:10.1038/nrn918

    Article  PubMed  Google Scholar 

  46. Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19:341–377. doi:10.1146/annurev.ne.19.030196.002013

    Article  CAS  PubMed  Google Scholar 

  47. Waites CL, Craig AM, Garner CC (2005) Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28:251–274. doi:10.1146/annurev.neuro.27.070203.144336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. R. Krug (University of Wuerzburg, Germany) for Raf1 and MEK1(K97R) cDNA, and C. Herrmann (Max Plank Institute of Molecular Physiology, Germany) for GST-Raf(RBD) cDNA. This work was supported by a National Research Foundation Grant (2006-0093855) and a NRF Grant (2011-0030141) through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (MEST) of the Korea, and by a Korea University Grant (E.-J.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Ju Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryoo, K., Hwang, Sg., Kim, K.J. et al. RC3/neurogranin negatively regulates extracellular signal-regulated kinase pathway through its interaction with Ras. Mol Cell Biochem 402, 33–40 (2015). https://doi.org/10.1007/s11010-014-2311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2311-0

Keywords

Navigation