Skip to main content
Log in

Serotonin drives the activation of pulmonary artery adventitial fibroblasts and TGF-β1/Smad3-mediated fibrotic responses through 5-HT2A receptors

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Pulmonary arterial remodeling is characterized by excessive proliferation, migration, and pro-differentiation and fibrotic activation of adventitial fibroblasts in pulmonary arterial hypertension (PAH) process. Several lines of evidence indicate that serotonin (5-HT) plays a central role in the pathogenesis of pulmonary arterial remodeling. In the present study, we investigated whether 5-HT is directly involved in the functional regulation of pulmonary artery adventitial fibroblasts (PAFs). Incubation of cultured rat PAFs with 5-HT caused a dose-dependent stimulation of cell proliferation, migration activity, and a time-dependent increase of α-SMA expression, a marker of fibroblast differentiation into myofibroblasts, and adventitia fibrosis, evaluating connective tissue growth factor (CTGF) and extracellular matrix (ECM) mRNAs and proteins. These effects were attenuated by the 5-HT2A receptor antagonist, ketanserin and mimicked by the 5-HT2A receptor agonist DOI. 5-HT-induced fibroblasts phenotypic alterations and ECM accumulation were dependent on stimulation of transforming growth factor (TGF)-β1 as demonstrated using a neutralizing antibody. 5-HT also caused Smad3 phosphorylation and ketanserin diminished 5-HT-induced Smad3 activation. These results demonstrated that 5-HT can directly activate PAFs through 5-HT2A receptor and promote fibroblasts phenotypic alterations and adventitia fibrosis depending on the signaling of the TGF-β1/Smad3 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Taguchi K, Hattori Y (2013) Unlooked-for significance of cardiac versus vascular effects of endothelin-1 in the pathophysiology of pulmonary arterial hypertension. Circ Res 112:227–229. doi:10.1161/CIRCRESAHA.112.300623

    Article  PubMed  CAS  Google Scholar 

  2. Shimoda LA, Laurie SS (2013) Vascular remodeling in pulmonary hypertension. J Mol Med (Berl) 91:297–309. doi:10.1007/s00109-013-0998-0

    Article  CAS  Google Scholar 

  3. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24S. doi:10.1016/j.jacc.2004.02.029

    Article  PubMed  CAS  Google Scholar 

  4. Stenmark KR, Yeager ME, El Kasmi KC, Nozik-Grayck E, Gerasimovskaya EV, Li M, Riddle SR, Frid MG (2013) The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol 75:23–47. doi:10.1146/annurev-physiol-030212-183802

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Stenmark KR (2006) Role of the adventitia in pulmonary vascular remodeling. Physiology 21:134–145. doi:10.1152/physiol.00053.2005

    Article  PubMed  CAS  Google Scholar 

  6. Havelka GE, Kibbe MR (2011) The vascular adventitia: its role in the arterial injury response. Vasc Endovasc Surg 45:381–390. doi:10.1177/1538574411407698

    Article  Google Scholar 

  7. Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, Yeager ME, Fini MA, Morrell NW, Pullamsetti SS, Velegala S, Seeger W, McKinsey TA, Sucharov CC, Stenmark KR (2014) MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 114:67–78. doi:10.1161/CIRCRESAHA.114.301633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366. doi:10.1146/annurev.med.60.042307.110802

    Article  PubMed  CAS  Google Scholar 

  9. Hervé P, Launay J-M, Scrobohaci M-L, Brenot F, Simonneau G, Petitpretz P, Poubeau P, Cerrina J, Duroux P, Drouet L (1995) Increased plasma serotonin in primary pulmonary hypertension. Am J Med 99:249–254. doi:10.1016/s0002-9343(99)80156-9

    Article  PubMed  Google Scholar 

  10. Kereveur A, Callebert J, Humbert M, Herve P, Simonneau G, Launay JM, Drouet L (2000) High plasma serotonin levels in primary pulmonary hypertension. Effect of long-term epoprostenol (prostacyclin) therapy. Arterioscler Thromb Vasc Biol 20:2233–2239. doi:10.1161/01.atv.20.10.2233

    Article  PubMed  CAS  Google Scholar 

  11. Abenhaim L, Moride Y, Brenot F, Rich S, Benichou J, Kurz X, Higenbottam T, Oakley C, Wouters E, Aubier M, Simonneau G, Begaud B (1996) Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N Engl J Med 335:609–616. doi:10.1056/NEJM199608293350901

    Article  PubMed  CAS  Google Scholar 

  12. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213. doi:10.1016/j.bbr.2008.03.020

    Article  PubMed  CAS  Google Scholar 

  13. Delaney C, Gien J, Grover TR, Roe G, Abman SH (2011) Pulmonary vascular effects of serotonin and selective serotonin reuptake inhibitors in the late-gestation ovine fetus. Am J Physiol Lung Cell Mol Physiol 301:L937–L944. doi:10.1152/ajplung.00198.2011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Liu Y, Tian H, Yan X, Fan F, Wang W, Han J (2013) Serotonin inhibits apoptosis of pulmonary artery smooth muscle cells through 5-HT2A receptors involved in the pulmonary artery remodeling of pulmonary artery hypertension. Exp Lung Res 39:70–79. doi:10.3109/01902148.2012.758191

    Article  PubMed  Google Scholar 

  15. Liu Y, Tian HY, Yan XL, Fan FL, Wang WP, Han JL, Zhang JB, Ma Q, Meng Y, Wei F (2013) Serotonin inhibits apoptosis of pulmonary artery smooth muscle cell by pERK1/2 and PDK through 5-HT1B receptors and 5-HT transporters. Cardiovasc Pathol 22:451–457. doi:10.1016/j.carpath.2013.03.003

    Article  PubMed  CAS  Google Scholar 

  16. Yabanoglu S, Akkiki M, Seguelas MH, Mialet-Perez J, Parini A, Pizzinat N (2009) Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. J Mol Cell Cardiol 46:518–525. doi:10.1016/j.yjmcc.2008.12.019

    Article  PubMed  CAS  Google Scholar 

  17. Sethi A, Jain A, Zode GS, Wordinger RJ, Clark AF (2011) Role of TGFβ/Smad signaling in gremlin induction of human trabecular meshwork extracellular matrix proteins. Invest Ophthalmol Vis Sci 52:5251–5259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Verrecchia F, Mauviel A (2002) Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 118:211–215. doi:10.1046/j.1523-1747.2002.01641.x

    Article  PubMed  CAS  Google Scholar 

  19. Leask A (2010) Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106:1675–1680. doi:10.1161/CIRCRESAHA.110.217737

    Article  PubMed  CAS  Google Scholar 

  20. Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-beta signaling in fibrosis. Growth Factors 29:196–202. doi:10.3109/08977194.2011.595714

    Article  PubMed  CAS  Google Scholar 

  21. Welsh DJ, Scott PH, Peacock AJ (2006) p38 MAP kinase isoform activity and cell cycle regulators in the proliferative response of pulmonary and systemic artery fibroblasts to acute hypoxia. Pulm Pharmacol Ther 19:128–138. doi:10.1016/j.pupt.2005.04.008

    Article  PubMed  CAS  Google Scholar 

  22. Welsh DJ, Peacock AJ, MacLEAN M, Harnett M (2001) Chronic hypoxia induces constitutive p38 mitogen-activated protein kinase activity that correlates with enhanced cellular proliferation in fibroblasts from rat pulmonary but not systemic arteries. Am J Respir Crit Care 164:282–289. doi:10.1164/ajrccm.164.2.2008054

    Article  CAS  Google Scholar 

  23. Grewal JS, Mukhin YV, Garnovskaya MN, Raymond JR, Greene EL (1999) Serotonin 5-HT2A receptor induces TGF-beta1 expression in mesangial cells via ERK: proliferative and fibrotic signals. Am J Physiol 276:F922–F930

    PubMed  CAS  Google Scholar 

  24. Kim DC, Jun DW, Kwon YI, Lee KN, Lee HL, Lee OY, Yoon BC, Choi HS, Kim EK (2013) 5-HT2A receptor antagonists inhibit hepatic stellate cell activation and facilitate apoptosis. Liver Int 33:535–543. doi:10.1111/liv.12110

    Article  PubMed  CAS  Google Scholar 

  25. Short M, Nemenoff RA, Zawada WM, Stenmark KR, Das M (2004) Hypoxia induces differentiation of pulmonary artery adventitial fibroblasts into myofibroblasts. Am J Physiol Cell Physiol 286:C416–C425. doi:10.1152/ajpcell.00169.2003

    Article  PubMed  CAS  Google Scholar 

  26. Tamura K (1997) Serotonin (5-hydroxytryptamine, 5-HT) enhances migration of rat aortic smooth muscle cells through 5-HT2 receptors. Atherosclerosis 132:139–143. doi:10.1016/s0021-9150(97)00077-4

    Article  PubMed  CAS  Google Scholar 

  27. Durmowicz AG, Parks WC, Hyde DM, Mecham RP, Stenmark KR (1994) Persistence, re-expression, and induction of pulmonary arterial fibronectin, tropoelastin, and type I procollagen mRNA expression in neonatal hypoxic pulmonary hypertension. Am J Pathol 145:1411–1420

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Mann DA, Oakley F (2013) Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta 1832:905–910. doi:10.1016/j.bbadis.2012.09.009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Kasho M, Sakai M, Sasahara T, Anami Y, Matsumura T, Takemura T, Matsuda H, Kobori S, Shichiri M (1998) Serotonin enhances the production of type IV collagen by human mesangial cells. Kidney Int 54:1083–1092. doi:10.1046/j.1523-1755.1998.00114.x

    Article  PubMed  CAS  Google Scholar 

  30. Dees C, Akhmetshina A, Zerr P, Reich N, Palumbo K, Horn A, Jungel A, Beyer C, Kronke G, Zwerina J, Reiter R, Alenina N, Maroteaux L, Gay S, Schett G, Distler O, Distler JH (2011) Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med 208:961–972. doi:10.1084/jem.20101629

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Stenmark K, Frid M (2011) Pulmonary vascular remodeling: cellular and molecular mechanisms. In: Yuan JXJ, Garcia JGN, West JB, Hales CA, Rich S and Archer SL (eds) Textbook of pulmonary vascular disease, Springer US, pp 759–777

  32. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691. doi:10.1161/01.RES.0000243584.45145.3f

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 81170294) and the State Key Program of the National Natural Science Foundation of China (Grant No. 30830051).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiqun Ma or Hongyan Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Han, X., Fan, F. et al. Serotonin drives the activation of pulmonary artery adventitial fibroblasts and TGF-β1/Smad3-mediated fibrotic responses through 5-HT2A receptors. Mol Cell Biochem 397, 267–276 (2014). https://doi.org/10.1007/s11010-014-2194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2194-0

Keywords

Navigation