Skip to main content
Log in

miR-125a inhibits porcine preadipocytes differentiation by targeting ERRα

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MicroRNAs are a family of small, non-coding RNAs that regulate gene expression in a sequence-specific manner. Estrogen-related receptor α (ERRα) is an orphan nuclear receptor which plays an important role in adipocyte differentiation. Our previous Solexa sequencing results indicated a high expression of miR-125a in adult pig backfat. In this study, we predicated and experimentally validated ERRα as a target of miR-125a. To explore the role of miR-125a in porcine preadipocytes differentiation, miRNA agomir and antagomir were used to perform miR-125a overexpression or knockdown, respectively. Our results showed that overexpression of miR-125a could dramatically reduce the mRNA expression of adipogenic markers PPARγ, LPL, and aP2, as well as its target gene ERRα. Western blotting showed the protein level of aP2 and ERRα was also significantly down-regulated. The overexpression of miR-125a also led to a notable reduction in lipid accumulation which was detected by Oil Red O staining. In contrast, we observed promoted differentiation of porcine preadipocytes upon miR-125a inhibition. In conclusion, we verified miR-125a inhibits porcine preadipocytes differentiation through targeting ERRα for the first time, which may provide new insights in pork quality improvement and obesity control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ERRα:

Estrogen-related receptor α

PPARγ:

Peroxisome proliferator-activated receptor-γ

C/EBPα:

CCAAT/enhancer-binding protein-α

LPL:

Lipoprotein lipase

aP2:

Adipocyte protein 2

FAS:

Fatty acid synthase

References

  1. French P, Crabbe M (2010) Fat China: how expanding waistlines are changing a nation. Anthem Press, London

    Google Scholar 

  2. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853. doi:10.1038/nature05483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bellinger DA, Merricks EP, Nichols TC (2006) Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J 47(3):243–258

    Article  CAS  PubMed  Google Scholar 

  4. Brambilla G, Cantafora A (2004) Metabolic and cardiovascular disorders in highly inbred lines for intensive pig farming: how animal welfare evaluation could improve the basic knowledge of human obesity. Annali dell’Istituto Superiore di Sanita 40(2):241–244

    PubMed  Google Scholar 

  5. Larsen MO, Rolin B (2004) Use of the Gottingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J 45(3):303–313

    Article  CAS  PubMed  Google Scholar 

  6. Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Investig 121(6):2094–2101. doi:10.1172/JCI45887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79(7):1147–1156

    Article  CAS  PubMed  Google Scholar 

  8. Lin FT, Lane MD (1994) CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci USA 91(19):8757–8761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ, Kawahara R, Hauner H, Jain MK (2003) The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem 278(4):2581–2584. doi:10.1074/jbc.M210859200

    Article  PubMed  Google Scholar 

  10. Birsoy K, Chen Z, Friedman J (2008) Transcriptional regulation of adipogenesis by KLF4. Cell Metab 7(4):339–347. doi:10.1016/j.cmet.2008.02.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lee H, Kim HJ, Lee YJ, Lee MY, Choi H, Lee H, Kim JW (2012) Kruppel-like factor KLF8 plays a critical role in adipocyte differentiation. PLoS ONE 7(12):e52474. doi:10.1371/journal.pone.0052474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li D, Yea S, Li S, Chen Z, Narla G, Banck M, Laborda J, Tan S, Friedman JM, Friedman SL, Walsh MJ (2005) Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem 280(29):26941–26952. doi:10.1074/jbc.M500463200

    Article  CAS  PubMed  Google Scholar 

  13. Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, Nakamura K, Nakamura T, Yamauchi T, Kubota N, Kadowaki T, Matsuki Y, Ogawa W, Hiramatsu R, Kasuga M (2005) Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280(13):12867–12875. doi:10.1074/jbc.M410515200

    Article  CAS  PubMed  Google Scholar 

  14. Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K, Nishimura G, Maemura K, Yamauchi T, Kubota N, Suzuki R, Kitamura T, Akira S, Kadowaki T, Nagai R (2005) Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1(1):27–39. doi:10.1016/j.cmet.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  15. Pei H, Yao Y, Yang Y, Liao K, Wu JR (2011) Kruppel-like factor KLF9 regulates PPARgamma transactivation at the middle stage of adipogenesis. Cell Death Differ 18(2):315–327. doi:10.1038/cdd.2010.100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM, Hotamisligil GS (2000) Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290(5489):134–138

    Article  CAS  PubMed  Google Scholar 

  17. Luo J, Sladek R, Carrier J, Bader JA, Richard D, Giguere V (2003) Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor alpha. Mol Cell Biol 23(22):7947–7956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ijichi N, Ikeda K, Horie-Inoue K, Yagi K, Okazaki Y, Inoue S (2007) Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation. Biochem Biophys Res Commun 358(3):813–818. doi:10.1016/j.bbrc.2007.04.209

    Article  CAS  PubMed  Google Scholar 

  19. Ju D, He J, Zhao L, Zheng X, Yang G (2012) Estrogen related receptor alpha-induced adipogenesis is PGC-1beta-dependent. Mol Biol Rep 39(3):3343–3354. doi:10.1007/s11033-011-1104-8

    Article  CAS  PubMed  Google Scholar 

  20. Ju D, He J, Zheng X, Yang G (2009) Cloning, expression of the porcine estrogen-related receptor alpha gene and its effect on lipid accumulation in mature adipocytes. Sheng wu gong cheng xue bao = Chin J Biotechnol 25(11):1627–1632

    CAS  Google Scholar 

  21. Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ (2009) MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 23(6):925–931. doi:10.1210/me.2008-0298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365. doi:10.1074/jbc.C400438200

    Article  CAS  PubMed  Google Scholar 

  23. Kang T, Lu W, Xu W, Anderson L, Bacanamwo M, Thompson W, Chen YE, Liu D (2013) MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem 288(48):34394–34402. doi:10.1074/jbc.M113.514372

    Article  CAS  PubMed  Google Scholar 

  24. Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M (2011) miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 31(4):626–638. doi:10.1128/MCB.00894-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gerin I, Bommer GT, McCoin CS, Sousa KM, Krishnan V, MacDougald OA (2010) Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab 299(2):E198–E206. doi:10.1152/ajpendo.00179.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Li H, Chen X, Guan L, Qi Q, Shu G, Jiang Q, Yuan L, Xi Q, Zhang Y (2013) miRNA-181a regulates adipogenesis by targeting tumor necrosis factor-alpha (TNF-alpha) in the porcine model. PLoS ONE 8(10):e71568. doi:10.1371/journal.pone.0071568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cowden Dahl KD, Dahl R, Kruichak JN, Hudson LG (2009) The epidermal growth factor receptor responsive miR-125a represses mesenchymal morphology in ovarian cancer cells. Neoplasia 11(11):1208–1215

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Jiang L, Huang Q, Zhang S, Zhang Q, Chang J, Qiu X, Wang E (2010) Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer 10:318. doi:10.1186/1471-2407-10-318

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ufkin ML, Peterson S, Yang X, Driscoll H, Duarte C, Sathyanarayana P (2014) miR-125a regulates cell cycle, proliferation, and apoptosis by targeting the ErbB pathway in acute myeloid leukemia. Leuk Res 38(3):402–410. doi:10.1016/j.leukres.2013.12.021

    Article  CAS  PubMed  Google Scholar 

  30. Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, Purton LE, Fleming HH, Cobb B, Merkenschlager M, Golub TR, Scadden DT (2010) MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci USA 107(32):14229–14234. doi:10.1073/pnas.0913574107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Li G, Li Y, Li X, Ning X, Li M, Yang G (2011) MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing. J Cell Biochem 112(5):1318–1328. doi:10.1002/jcb.23045

    Article  CAS  PubMed  Google Scholar 

  32. Cho IS, Kim J, Seo HY, Lim DH, Hong JS, Park YH, Park DC, Hong KC, Whang KY, Lee YS (2010) Cloning and characterization of microRNAs from porcine skeletal muscle and adipose tissue. Molecular biology reports 37(7):3567–3574. doi:10.1007/s11033-010-0005-6

    Article  CAS  PubMed  Google Scholar 

  33. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4(4):263–273. doi:10.1016/j.cmet.2006.07.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7(12):885–896. doi:10.1038/nrm2066

    Article  CAS  PubMed  Google Scholar 

  35. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124. doi:10.1016/S0092-8674(00)80611-X

    Article  CAS  PubMed  Google Scholar 

  36. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413(6852):131–138. doi:10.1038/35093050

    Article  CAS  PubMed  Google Scholar 

  37. Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, Yang W, Altshuler D, Puigserver P, Patterson N, Willy PJ, Schulman IG, Heyman RA, Lander ES, Spiegelman BM (2004) Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 101(17):6570–6575. doi:10.1073/pnas.0401401101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Huss JM, Torra IP, Staels B, Giguere V, Kelly DP (2004) Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol 24(20):9079–9091. doi:10.1128/MCB.24.20.9079-9091.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Rajalin AM, Pollock H, Aarnisalo P (2010) ERRalpha regulates osteoblastic and adipogenic differentiation of mouse bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 396(2):477–482. doi:10.1016/j.bbrc.2010.04.120

    Article  CAS  PubMed  Google Scholar 

  40. Guo Y, Chen Y, Zhang Y, Zhang Y, Chen L, Mo D (2012) Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1. Int J Biol Sci 8(10):1408–1417. doi:10.7150/ijbs.4597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Wang T, Li M, Guan J, Li P, Wang H, Guo Y, Shuai S, Li X (2011) MicroRNAs miR-27a and miR-143 regulate porcine adipocyte lipid metabolism. Int J Mol Sci 12(11):7950–7959. doi:10.3390/ijms12117950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Herrera BM, Lockstone HE, Taylor JM, Wills QF, Kaisaki PJ, Barrett A, Camps C, Fernandez C, Ragoussis J, Gauguier D, McCarthy MI, Lindgren CM (2009) MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 diabetes. BMC Med Genomics 2:54. doi:10.1186/1755-8794-2-54

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lorente-Cebrian S, Mejhert N, Kulyte A, Laurencikiene J, Astrom G, Heden P, Ryden M, Arner P (2014) MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-alpha. PLoS ONE 9(1):e86800. doi:10.1371/journal.pone.0086800

    Article  PubMed Central  PubMed  Google Scholar 

  44. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77(1):51–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank members of our laboratories for helpful discussions. These studies were supported by National Natural Science Foundation of China (Grant No. 31101685 and No. 31072014).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-li Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Hl., Song, CC., Li, YF. et al. miR-125a inhibits porcine preadipocytes differentiation by targeting ERRα. Mol Cell Biochem 395, 155–165 (2014). https://doi.org/10.1007/s11010-014-2121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2121-4

Keywords

Navigation