Skip to main content

Advertisement

Log in

CD73-TNAP crosstalk regulates the hypertrophic response and cardiomyocyte calcification due to α1 adrenoceptor activation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cluster of differentiation 73 (CD73) is an ecto-5′ nucleotidase which catalyzes the conversion of AMP to adenosine. One of the many functions of adenosine is to suppress the activity of tissue nonspecific alkaline phosphatase (TNAP), an enzyme important in regulating intracellular calcification. Since myocardial calcification is associated with various cardiac disease states, we studied the individual roles and crosstalk between CD73 and TNAP in regulating myocyte responses to the α1 adrenoceptor agonist phenylephrine in terms of calcification and hypertrophy. Cultured neonatal rat cardiomyocytes were treated with 10 µM phenylephrine for 24 h in the absence or presence of the stable adenosine analog 2-chloro-adenosine, the TNAP inhibitor tetramisole or the CD73 inhibitor α,β-methylene ADP. Phenylephrine produced marked hypertrophy as evidenced by significant increases in myocyte surface area and ANP gene expression, as well as calcification determined by Alizarin Red S staining. These responses were associated with reduced CD73 gene and protein expression and CD73 activity. Conversely, TNAP expression and activity were significantly increased although both were suppressed by 2-chloro-adenosine. CD73 inhibition alone significantly reduced myocyte-derived adenosine levels by >50 %, and directly induced hypertrophy and calcification in the absence of phenylephrine. These responses and those to phenylephrine were abrogated by TNAP inhibition. We conclude that TNAP contributes to the hypertrophic effect of phenylephrine, as well as its ability to produce cardiomyocyte calcification. These responses are minimized by CD73-dependent endogenously produced adenosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laubach VE, French BA, Okusa MD (2011) Targeting of adenosine receptors in ischemia-reperfusion injury. Expert Opin Ther Targets 15:103–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Liao Y, Takashima S, Asano Y, Asakura M, Ogai A, Shintani Y, Minamino T, Asanuma H, Sanada S, Kim J, Ogita H, Tomoike H, Hori M, Kitakaze M (2007) Activation of adenosine A1 receptor attenuates cardiac hypertrophy and prevents heart failure in murine left ventricular pressure-overload model. Circ Res 93:759–7663

    Article  Google Scholar 

  3. Gan XT, Rajapurohitam V, Haist JV, Chidiac P, Cook MA, Karmazyn M (2005) Inhibition of phenylephrine-induced cardiomyocyte hypertrophy by activation of multiple adenosine receptor subtypes. J Pharmacol Exp Ther 312:27–34

    Article  CAS  PubMed  Google Scholar 

  4. Karmazyn M, Gan XT (2013) Advances in biochemistry in health and disease. In: Ostadal B, Dhalla NS (eds) Cardiac adaptations. Springer, New York, pp 403–414

    Chapter  Google Scholar 

  5. Schrader WP, West CA (1990) Localization of adenosine deaminase and adenosine deaminase complexing protein in rabbit heart. Implications for adenosine metabolism. Circ Res 66:754–762

    Article  CAS  PubMed  Google Scholar 

  6. Gray RP, Owen KM, Giacomini KM (2004) The concentrative nucleoside transporter family, SLC28. Pflugers Arch 447:728–734

    Article  CAS  PubMed  Google Scholar 

  7. Naito Y, Lowenstein JM (1981) 5’-Nucleotidase from rat heart. Biochemistry 20:5188–5194

    Article  CAS  PubMed  Google Scholar 

  8. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5’-nucleotidase (CD73). Purinergic Signal 2:351–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. St Hilaire C, Ziegler SG, Markello TC, Brusco A, Groden C, Gill F, Carlson-Donohoe H, Lederman RJ, Chen MY, Yang D, Siegenthaler MP, Arduino C, Mancini C, Freudenthal B, Stanescu HC, Zdebik AA, Chaganti RK, Nussbaum RL, Kleta R, Gahl WA, Boehm M (2011) NT5E mutations and arterial calcifications. N Engl J Med 364:432–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Millán JL, Fishman WH (1995) Biology of human alkaline phosphatases with special reference to cancer. Crit Rev Clin Lab Sci 32:1–39

    Article  PubMed  Google Scholar 

  12. Mota A, Silva P, Neves D, Lemos C, Calhau C, Torres D, Martel F, Fraga H, Ribeiro L, Alçada MN, Pinho MJ, Negrão MR, Pedrosa R, Guerreiro S, Guimarães JT, Azevedo I, Martins MJ (2008) Characterization of rat heart alkaline phosphatase isoenzymes and modulation of activity. Braz J Med Biol Res 41:600–609

    Article  CAS  PubMed  Google Scholar 

  13. Weissen-Plenz G, Nitschke Y, Rutsch F (2008) Mechanisms of arterial calcification: spotlight on the inhibitors. Adv Clin Chem 46:263–293

    Article  CAS  PubMed  Google Scholar 

  14. Schoppet M, Shanahan CM (2008) Role for alkaline phosphatase as an inducer of vascular calcification in renal failure? Kidney Int 73:989–991

    Article  CAS  PubMed  Google Scholar 

  15. van Kruijsdijk RC, van der Heijden JJ, Uijlings R, Otterspoor LC (2011) Sepsis-related myocardial calcification. Circ Heart Fail 4:e16–e18

    Article  PubMed  Google Scholar 

  16. Kaimoto S, Kawasaki T, Yamano M, Miki S, Kamitani T, Sugihara H (2012) Intramyocardial calcification in a patient with apical hypertrophic cardiomyopathy. Intern Med 51:1523–1526

    Article  PubMed  Google Scholar 

  17. Lee HU, Youn HJ, Shim BJ, Lee SJ, Park MY, Jeong JU, Gu GM, Jeon HK, Lee JE, Kwon BJ (2012) Porcelain heart: rapid progression of cardiac calcification in a patient with hemodialysis. J Cardiovasc Ultrasound 20:193–196

    Article  PubMed Central  PubMed  Google Scholar 

  18. Joshi PV, Lele VR, Shah HJ, Rao S (2012) Massive calcification in the myocardium post infarction. Heart Views 13:74

    Article  PubMed Central  PubMed  Google Scholar 

  19. Proudfoot D, Skepper JN, Hegyi L, Bennett MR, Shanahan CM, Weissberg PL (2000) Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ Res 87:1055–1062

    Article  CAS  PubMed  Google Scholar 

  20. Pang T, Gan XT, Freeman DJ, Cook MA, Karmazyn M (2010) Compensatory upregulation of the adenosine system following phenylephrine-induced hypertrophy in cultured rat ventricular myocytes. Am J Physiol Heart Circ Physiol 298:H545–H553

    Article  CAS  PubMed  Google Scholar 

  21. Li L, Chang L, Pellet-Rostaing S, Liger F, Lemaire M, Buchet R, Wu Y (2009) Synthesis and evaluation of benzo[b]thiophene derivatives as inhibitors of alkaline phosphatases. Bioorg Med Chem 17:7290–7300

    Article  CAS  PubMed  Google Scholar 

  22. Darvish A, Pomerantz RW, Zografides PG, Metting PJ (1996) Contribution of cytosolic and membrane-bound 5’-nucleotidases to cardiac adenosine production. Am J Physiol 271:H2162–H2167

    CAS  PubMed  Google Scholar 

  23. Fujita M, Asakura M, Sanada S, Funaya H, Tsukamoto O, Komamura K, Asanuma H, Taketani S, Isomura T, Nakamaru K, Furukawa H, Sawa Y, Hori M, Kitakaze M (2008) Activation of ecto-5’-nucleotidase in the blood and hearts of patients with chronic heart failure. J Card Fail 14:426–430

    Article  CAS  PubMed  Google Scholar 

  24. Xu X, Fassett J, Hu X, Zhu G, Lu Z, Li Y, Schnermann J, Bache RJ, Chen Y (2008) Ecto-5’-nucleotidase deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction. Hypertension 51:1557–1564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Robin E, Sabourin J, Marcillac F, Raddatz E (2013) Involvement of CD73, equilibrative nucleoside transporters and inosine in rhythm and conduction disturbances mediated by adenosine A1 and A2A receptors in the developing heart. J Mol Cell Cardiol 63:14–25

    Article  CAS  PubMed  Google Scholar 

  26. Millán JL (2006) Alkaline Phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341

    Article  PubMed Central  PubMed  Google Scholar 

  27. Markello TC, Pak LK, St Hilaire C, Dorward H, Ziegler SG, Chen MY, Chaganti K, Nussbaum RL, Boehm M, Gahl WA (2011) Vascular pathology of medial arterial calcifications in NT5E deficiency: implications for the role of adenosine in pseudoxanthoma elasticum. Mol Genet Metab 103:44–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tonelli M, Curhan G, Pfeffer M, Sacks F, Thadhani R, Melamed ML (2009) Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation 120:1784–1792

    Article  CAS  PubMed  Google Scholar 

  29. Dahl R, Sergienko EA, Su Y, Mostofi YS, Yang L, Simao AM, Narisawa S, Brown B, Mangravita-Novo A, Vicchiarelli M, Smith LH, O’Neill WC, Millán JL, Cosford ND (2009) Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J Med Chem 52:6919–6925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Heineke J, Ritter O (2012) Cardiomyocyte calcineurin signaling in subcellular domains: from the sarcolemma to the nucleus and beyond. J Mol Cell Cardiol 52:62–73

    Article  CAS  PubMed  Google Scholar 

  31. Kim YH, Yoon DS, Kim HO, Lee JW (2012) Characterization of different subpopulations from bone marrow-derived mesenchymal stromal cells by alkaline phosphatase expression. Stem Cells Dev 21:2958–2968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Elsherif L, Huang MS, Shai SY, Yang Y, Li RY, Chun J, Mekany MA, Chu AL, Kaufman SJ, Ross RS (2008) Combined deficiency of dystrophin and beta1 integrin in the cardiac myocyte causes myocardial dysfunction, fibrosis and calcification. Circ Res 102:1109–1117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Heart and Stroke Foundation of Ontario (NA 6028). M Karmazyn holds a Tier 1 Canada Research Chair in Experimental Cardiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris Karmazyn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, X.T., Taniai, S., Zhao, G. et al. CD73-TNAP crosstalk regulates the hypertrophic response and cardiomyocyte calcification due to α1 adrenoceptor activation. Mol Cell Biochem 394, 237–246 (2014). https://doi.org/10.1007/s11010-014-2100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2100-9

Keywords

Navigation