Skip to main content
Log in

Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim was to explore the effects of rapamycin on autophagy and injury of podocytes in streptozocin (STZ)-induced type 1 diabetic mice, and its role in delaying progression of diabetic nephropathy. In this study, male Balb/c mice were divided into three groups: control (n = 12), STZ-induced diabetic (n = 12), and rapamycin-treated diabetic (DM + Rapa) (n = 12), which received intraperitoneal injection of rapamycin (2 mg/kg/48 h) after induction of DM. Levels of urinary albumin (UA), blood urea nitrogen, serum creatinine, and kidney weight/body weight were measured at week 12. Renal pathologic changes, number of podocytes autophagy, and organelles injury were investigated by PAS staining, transmission electron microscopy, and immunofluorescence staining, respectively. Western blot was performed to determine the expression of LC3 (a podocyte autophagy marker), phosphorylated mammalian target of rapamycin, p-p70S6K, bax, and caspase-3 protein. Podocytes count was evaluated by immunofluorescence staining and Wilms tumor 1 immunohistochemistry, and Western blot of nephrin and podocin. The results indicated that rapamycin could reduce the kidney weight/body weight and UA secretion. It could alleviate podocyte foot process fusion, glomerular basement membrane thickening, and matrix accumulation, and increase the number of autophagosomes, and LC3-expressing podocytes. Down-regulation of bax and caspase-3 protein, and up-regulation of nephrin and podocin protein were observed in the glomeruli of diabetic mice after administration of rapamycin. In conclusion, rapamycin can ameliorate renal injury in diabetic mice by increasing the autophagy activity and inhibition of apoptosis of podocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhuang L, Li M, Yu C, Li C, Zhao M, Lu M, Zheng T, Zhang R, Zhao W, Bao Y, Xiang K, Jia W, Wang N, Liu L (2014) The Leu72Met polymorphism of the GHRL gene prevents the development of diabetic nephropathy in Chinese patients with type 2 diabetes mellitus. Mol Cell Biochem 387:19–25

    Article  CAS  PubMed  Google Scholar 

  2. Lasaridis AN, Sarafidis PA (2003) Diabetic nephropathy and antihypertensive treatment: what are the lessons from clinical trials? Am J Hypertens 16:689–697

    Article  CAS  PubMed  Google Scholar 

  3. Lee JW, Brancati FL, Yeh HC (2011) Trends in the prevalence of type 2 diabetes in Asians versus whites: results from the United States National Health Interview Survey, 1997–2008. Diabetes Care 34:353–357

    Article  PubMed Central  PubMed  Google Scholar 

  4. Rossing K, Christensen PK, Hovind P, Tarnow L, Rossing P, Parving HH (2004) Progression of nephropathy in type 2 diabetic patients. Kidney Int 66:1596–1605

    Article  PubMed  Google Scholar 

  5. Parving HH (2001) Diabetic nephropathy: prevention and treatment. Kidney Int 60:2041–2055

    Article  CAS  PubMed  Google Scholar 

  6. Jerums G, Panagiotopoulos S, Premaratne E, MacIsaac RJ (2009) Integrating albuminuria and GFR in the assessment of diabetic nephropathy. Nat Rev 5:397–406

    CAS  Google Scholar 

  7. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:164–176

    Article  PubMed  Google Scholar 

  8. White KE, Bilous RW, Marshall SM, Nahas EI, Remuzzi M, Piras G, De Cosmo S, Viberti G (2002) Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes 51:3083–3089

    Article  CAS  PubMed  Google Scholar 

  9. Arya A, Yadav HN, Sharma PL (2011) Involvement of vascular endothelial nitric oxide synthase in development of experimental diabetic nephropathy in rats. Mol Cell Biochem 354:57–66

    Article  CAS  PubMed  Google Scholar 

  10. Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71:1205–1214

    Article  CAS  PubMed  Google Scholar 

  11. Vogelmann SU, Nelson WJ, Myers BD, Lemley KV (2003) Urinary excretion of viable podocytes in health and renal disease. Am J Physiol 285:F40–F48

    CAS  Google Scholar 

  12. Skoberne A, Konieczny A, Schiffer M (2009) Glomerular epithelial cells in the urine: what has to be done to make them worthwhile? Am J Physiol 296:F230–F241

    CAS  Google Scholar 

  13. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  PubMed  Google Scholar 

  14. Hartleben B, Godel M, Meyer-Schwesinger C, Liu S, Ulrich T, Kobler S, Wiech T, Grahammer F, Arnold SJ, Lindenmeyer MT, Cohen CD, Pavenstadt H, Kerjaschki D, Mizushima N, Shaw AS, Walz G, Huber TB (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. Clin Invest 120:1084–1096

    Article  CAS  Google Scholar 

  15. Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273(8):3963–3966

  16. Hartford CM, Ratain MJ (2007) Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther 82:381–388

    Article  CAS  PubMed  Google Scholar 

  17. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Eid AA, Ford BM, Bhandary B, de Cavaglieri Cassia R, Block K, Barnes JL, Gorin Y, Choudhury GG, Abboud HE (2013) Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 62:2935–2947

    CAS  Google Scholar 

  19. Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W, Dai C, Yang J (2013) Autophagy attenuates diabetic glomerluar damage through protection of hyperglycemia-induced podocyte injury. PLoS One 8:e60546

  20. Sanchez AP, Zhao J, You Y, Decleves AE, Diamond-Stanic M, Sharma K (2011) Role of the USF1 transcription factor in diabetic kidney disease. Am J Physiol 301:F271–F279

    CAS  Google Scholar 

  21. Weibel E (1979) Stereologic methods. Practical methods for biological. Academic Press, London, p 415

    Google Scholar 

  22. Zhao J, Huang Y, Song Y, Zhao X, Jin J, Wang J, Huang L (2009) Low osmolar contrast medium induces cellular injury and disruption of calcium homeostasis in rat glomerular endothelial cells in vitro. Toxicol Lett 185:124–131

    Article  CAS  PubMed  Google Scholar 

  23. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  24. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev 12:21–35

    Article  CAS  Google Scholar 

  25. Chew GS, Myers S, Shu-Chien AC, Muhammad TS (2014) Interleukin-6 inhibition of peroxisome proliferator-activated receptor alpha expression is mediated by JAK2-and PI3K-induced STAT1/3 in HepG2 hepatocyte cells. Mol Cell Biochem 388:25–37

    Article  CAS  PubMed  Google Scholar 

  26. Yang Y, Wang J, Qin L, Shou Z, Zhao J, Wang H, Chen Y, Chen J (2007) Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am J Nephrol 27:495–502

    Article  PubMed  Google Scholar 

  27. Lloberas N, Cruzado JM, Franquesa M, Herrero-Fresneda I, Torras J, Alperovich G, Rama I, Vidal A, Grinyo JM (2006) Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol 17:1395–1404

    Article  CAS  PubMed  Google Scholar 

  28. Mori H, Inoki K, Masutani K, Wakabayashi Y, Komai K, Nakagawa R, Guan KL, Yoshimura A (2009) The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun 384:471–475

    Article  CAS  PubMed  Google Scholar 

  29. Gattone VH, Sinders RM, Hornberger TA, Robling AG (2009) Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis. Kidney Int 76:178–182

    Article  CAS  PubMed  Google Scholar 

  30. Shillingford JM, Piontek KB, Germino GG, Weimbs T (2010) Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J Am Soc Nephrol 21:489–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chen G, Chen H, Wang C, Peng Y, Sun L, Liu H, Liu F (2012) Rapamycin ameliorates kidney fibrosis by inhibiting the activation of mTOR signaling in interstitial macrophages and myofibroblasts. PLoS ONE 7:e33626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510

    Article  CAS  PubMed  Google Scholar 

  33. Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, Blattner SM, Ikenoue T, Ruegg MA, Hall MN, Kwiatkowski DJ, Rastaldi MP, Huber TB, Kretzler M, Holzman LB, Wiggins RC, Guan KL (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121:2181–2196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Godel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, Debreczeni-Mor A, Lindenmeyer MT, Rastaldi MP, Hartleben G, Wiech T, Fornoni A, Nelson RG, Kretzler M, Wanke R, Pavenstadt H, Kerjaschki D, Cohen CD, Hall MN, Ruegg MA, Inoki K, Walz G, Huber TB (2011) Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 121:2197–2209

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lu MK, Gong XG, Guan KL (2011) mTOR in podocyte function: is rapamycin good for diabetic nephropathy? Cell Cycle 10:3415–3416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Diekmann F, Campistol JM (2006) Conversion from calcineurin inhibitors to sirolimus in chronic allograft nephropathy: benefits and risks. Nephrol Dial Transplant 21:562–568

    Article  CAS  PubMed  Google Scholar 

  37. Torras J, Herrero-Fresneda I, Gulias O, Flaguer M, Vidal A, Cruzado JM, Lioberas N, Franguesa MI, Grinyo JM (2009) Rapamycin has dual opposing effects on proteinuric experimental nephropathies: is it a matter of podocyte damage? Nephrol Dial Transplant 24:3632–3640

    Article  CAS  PubMed  Google Scholar 

  38. Palma HE, Wolkmer P, Gallio M, Correa MMB, Schmatz R, Thome GR, Pereira LB, Castro VSP, Pereira AB, Bueno A (2014) Oxidative stress parameters in blood, liver, and kidney of diabetic rats treated with curcumin and/or insulin. Mol Cell Biochem 386:199–210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research Grants from the National Natural Science Foundation of China (No. 81270290 and 30700316) and the project for overseas student from Ministry of Human Resources and Social Security of the People’s Republic of China.

Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Guan, X., Nie, L. et al. Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice. Mol Cell Biochem 394, 145–154 (2014). https://doi.org/10.1007/s11010-014-2090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2090-7

Keywords

Navigation