Skip to main content
Log in

Mitigation of postischemic cardiac contractile dysfunction by CaMKII inhibition: effects on programmed necrotic and apoptotic cell death

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

While Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been suggested to be an important protein regulating heart function upon ischemia/reperfusion (I/R), the mechanisms responsible are not fully known. Furthermore, it is not known whether CaMKII activation can modulate necroptosis, a recently described form of programmed cell death. In order to investigate these issues, Langendroff-perfused rat hearts were subjected to global ischemia and reperfusion, and CaMKII inhibition was achieved by adding the CaMKII inhibitor KN-93 (0.5 μmol/dm3) to the perfusion solution before the induction of ischemia. Immunoblotting was used to detect changes in expression of proteins modulating both necroptotic and apoptotic cell death. CaMKII inhibition normalized I/R induced increases in expression of necroptotic RIP1 and caspase-8 along with proteins of the intrinsic apoptotic pathway, namely cytochrome c and caspase-9. In addition, it increased the Bcl-2/Bax ratio and reduced caspase-3 and cleaved PARP1 content suggesting reduction of cell death. These changes coexisted with improvement of postischemic contractile function. On the other hand, there was no correlation between levels of pT287-CaMKIIδ and LVDP recovery after I/R. These results demonstrate for the first time that CaMKII inhibition may mitigate cardiac contractile dysfunction, at least partially, by limiting the contents of not only apoptotic, but also necroptotic proteins. Phosphorylation of CaMKII seems unlikely to determine the degree of postischemic recovery of contractile function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hetz CA, Torres V, Quest AF (2005) Beyond apoptosis: nonapoptotic cell death in physiology and disease. Biochem Cell Biol 83(5):579–588

    Article  CAS  PubMed  Google Scholar 

  2. Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Moquin D, Chan FK (2010) The molecular regulation of programmed necrotic cell injury. Trends Biochem Sci 35(8):434–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kung G, Konstantinidis K, Kitsis RN (2011) Programmed necrosis, not apoptosis, in the heart. Circ Res 108(8):1017–1036

    Article  CAS  PubMed  Google Scholar 

  5. Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA, Sluijter JP (2012) Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia–reperfusion in vivo. Basic Res Cardiol 107(4):270

    Article  PubMed  Google Scholar 

  6. Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM (2007) Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 21(4):227–233

    Article  CAS  PubMed  Google Scholar 

  7. Linkermann A, Bräsen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U, Krautwald S (2012) Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 81(8):751–761

    Article  CAS  PubMed  Google Scholar 

  8. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321

    Article  CAS  PubMed  Google Scholar 

  9. Northington FJ, Chavez-Valdez R, Graham EM, Razdan S, Gauda EB, Martin LJ (2011) Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI. J Cereb Blood Flow Metab 31(1):178–189

    Article  CAS  PubMed  Google Scholar 

  10. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227

    Article  CAS  PubMed  Google Scholar 

  11. Opie LH, Thandroyen FT (1984) Molecular and biochemical mechanisms underlying the role of calcium ions in malignant ventricular arrhythmias. Ann N Y Acad Sci 427:127–139

    Article  CAS  PubMed  Google Scholar 

  12. Jennings RB, Steenbergen C, Reimer KA (1995) Myocardial ischemia and reperfusion. Monogr Pathol 37:47–80

    CAS  PubMed  Google Scholar 

  13. Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94(2):168–180

    Article  CAS  PubMed  Google Scholar 

  14. Said M, Becerra R, Palomeque J, Rinaldi G, Kaetzel MA, Diaz-Sylvester PL, Copello JA, Dedman JR, Mundiña-Weilenmann C, Vittone L, Mattiazzi A (2008) Increased intracellular Ca2+ and SR Ca2+ load contribute to arrhythmias after acidosis in rat heart. Role of Ca2+ /calmodulin-dependent protein kinase II. Am J Physiol Heart Circ Physiol 295(4):H1669–H1683

    Article  CAS  PubMed  Google Scholar 

  15. Salas MA, Valverde CA, Sánchez G, Said M, Rodriguez JS, Portiansky EL, Kaetzel MA, Dedman JR, Donoso P, Kranias EG, Mattiazzi A (2010) The signalling pathway of CaMKII-mediated apoptosis and necrosis in the ischemia/reperfusion injury. J Mol Cell Cardiol 48(6):1298–1306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wu Y, Shintani A, Grueter C, Zhang R, Hou Y, Yang J, Kranias EG, Colbran RJ, Anderson ME (2006) Suppression of dynamic Ca(2 +) transient responses to pacing in ventricular myocytes from mice with genetic calmodulin kinase II inhibition. J Mol Cell Cardiol 40(2):213–223

    Article  CAS  PubMed  Google Scholar 

  17. Zhang R, Khoo MS, Wu Y, Yang Y, Grueter CE, Ni G, Price EE Jr, Thiel W, Guatimosim S, Song LS, Madu EC, Shah AN, Vishnivetskaya TA, Atkinson JB, Gurevich VV, Salama G, Lederer WJ, Colbran RJ, Anderson ME (2005) Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 11(4):409–417

    Article  CAS  PubMed  Google Scholar 

  18. Vila-Petroff M, Salas MA, Said M, Valverde CA, Sapia L, Portiansky E, Hajjar RJ, Kranias EG, Mundiña-Weilenmann C, Mattiazzi A (2007) CaMKII inhibition protects against necrosis and apoptosis in irreversible ischemia–reperfusion injury. Cardiovasc Res 73(4):689–698

    Article  CAS  PubMed  Google Scholar 

  19. Adameova A, Carnicka S, Rajtik T, Szobi A, Nemcekova M, Svec P, Ravingerova T (2012) Upregulation of CaMKIIδ during ischemia–reperfusion is associated with reperfusion-induced arrhythmias and mechanical dysfunction of the rat heart: involvement of sarcolemmal Ca2 + -cycling proteins. Can J Physiol Pharmacol 90(8):1127–1134

    Article  CAS  PubMed  Google Scholar 

  20. Couchonnal LF, Anderson ME (2008) The role of calmodulin kinase II in myocardial physiology and disease. Physiology (Bethesda) 23:151–159

    Article  CAS  Google Scholar 

  21. Sumi M, Kiuchi K, Ishikawa T, Ishii A, Hagiwara M, Nagatsu T, Hidaka H (1991) The newly synthesized selective Ca2 +/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12 h cells. Biochem Biophys Res Commun 181(3):968–975

    Article  CAS  PubMed  Google Scholar 

  22. Bell JR, Curl CL, Ip WT (2012) Delbridge LM (2012) Ca2 +/calmodulin-dependent protein kinase inhibition suppresses post-ischemic arrhythmogenesis and mediates sinus bradycardic recovery in reperfusion. Int J Cardiol 159(12):112–118

    Article  PubMed  Google Scholar 

  23. Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76(5):1713–1719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Corr PB, Witkowski FX (1984) Arrhythmias associated with reperfusion: basic insights and clinical relevance. J Cardiovasc Pharmacol 6(Suppl 6):S903–S909

    PubMed  Google Scholar 

  25. Wu W, Liu P, Li J (2012) Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 82(3):249–258

    Article  PubMed  Google Scholar 

  26. Neuss M, Crow MT, Chesley A, Lakatta EG (2001) Apoptosis in cardiac disease–what is it–how does it occur. Cardiovasc Drugs Ther 15(6):507–523

    Article  CAS  PubMed  Google Scholar 

  27. Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17(20):2481–2495

    Article  CAS  PubMed  Google Scholar 

  28. Chaitanya GV, Steven AJ, Babu PP (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8:31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lundberg KC, Szweda LI (2004) Initiation of mitochondrial-mediated apoptosis during cardiac reperfusion. Arch Biochem Biophys 432(1):50–57

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Zhang X, Kubo H et al (2005) Ca2 + influx-induced sarcoplasmic reticulum Ca2 + overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ Res 97(10):1009–1017

    Article  CAS  PubMed  Google Scholar 

  31. Szabadkai G, Rizzuto R (2004) Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis: more than just neighborhood? FEBS Lett 567(1):111–115

    Article  CAS  PubMed  Google Scholar 

  32. Bagnoli M, Canevari S, Mezzanzanica D (2010) Cellular FLICE-inhibitory protein (c-FLIP) signalling: a key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int J Biochem Cell Biol 42(2):210–213

    Article  CAS  PubMed  Google Scholar 

  33. Yang BF, Xiao C, Li H, Yang SJ (2007) Resistance to Fas-mediated apoptosis in malignant tumours is rescued by KN-93 and cisplatin via downregulation of c-FLIP expression and phosphorylation. Clin Exp Pharmacol Physiol 34(12):1245–1251

    Article  CAS  PubMed  Google Scholar 

  34. Xiao C, Yang BF, Song JH, Schulman H, Li L, Hao C (2005) Inhibition of CaMKII-mediated c-FLIP expression sensitizes malignant melanoma cells to TRAIL-induced apoptosis. Exp Cell Res 304(1):244–255

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Mrs. V. Hassova for her indispensable help. This study was supported by Grants UK/430/2013, VEGA 1/0638/12, VEGA 2/0054/11, APVV 0102-11, and APVV 0523-10.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Adameova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szobi, A., Rajtik, T., Carnicka, S. et al. Mitigation of postischemic cardiac contractile dysfunction by CaMKII inhibition: effects on programmed necrotic and apoptotic cell death. Mol Cell Biochem 388, 269–276 (2014). https://doi.org/10.1007/s11010-013-1918-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1918-x

Keywords

Navigation