Skip to main content
Log in

NF-κB-mediated miR-30b regulation in cardiomyocytes cell death by targeting Bcl-2

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Angiotensin II(Ang II)-stimulated cardiomyocytes hypertrophy and apoptosis are associated with nuclear factor-κB (NF-κB) activation. NF-κB, a redox-sensitive transcription factor, contributes a critical role in cell death, but, Ang II-stimulated NF-κB-mediated cardiomyocytes apoptosis remains less understood. Recently, microRNAs (miRNAs) have been shown to be critical regulators in various cardiac remodeling processes; however, NF-κB-mediated miRNA’s role in cardiomyocytes apoptosis remains undetermined. The miR-30b has been implicated in diverse cardiac remodeling; but, NF-κB-mediated miR-30b modulation in Ang II-induced cardiomyocytes death is currently unknown. In the present study, neonatal cardiomyocytes were pretreated with SN50, a selective cell permeable peptide inhibitor of NF-κB, or transfected with miR-30b mimetic and inhibitors separately, and then challenged with Ang II. The target gene, Bcl-2, and NF-κB transcriptional activity were analyzed. Our results demonstrated that NF-κB positively regulated miR-30b expression in Ang II-induced cardiomyocytes apoptosis, and Bcl-2 was a direct target for miR-30b. NF-κB further regulated the expression of Bcl-2 in the above setting. Furthermore, Ang II-induced cardiomyocytes apoptosis rescued by inhibiting either NF-κB or miR-30b provided an important role in cardiomyocytes cell death. We evaluated a critical role of NF-κB-mediated miR-30b modulation in Ang II-stimulated cardiomyocytes targeting Bcl-2. Our data may provide a new insight of miR-30b’s role in myocardial infarction or ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Colucci WS (1996) Apoptosis in the heart. N Engl J Med 335:1224–1226

    Article  CAS  PubMed  Google Scholar 

  2. MacLellan WR, Schneider MD (1997) Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 81:137–144

    Article  CAS  PubMed  Google Scholar 

  3. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    Article  CAS  PubMed  Google Scholar 

  4. Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 226:316–327

    Article  CAS  PubMed  Google Scholar 

  5. Cigola E, Kajstura J, Li B, Meggs LG, Anversa P (1997) Angiotensin II activates programmed myocyte cell death in vitro. Exp Cell Res 231:363–371

    Article  CAS  PubMed  Google Scholar 

  6. Hasegawa K, Iwai-Kanai E, Sasayama S (2001) Neurohormonal regulation of myocardial cell apoptosis during the development of heart failure. J Cell Physiol 186:11–18

    Article  CAS  PubMed  Google Scholar 

  7. Rouet-Benzineb P, Gontero B, Dreyfus P, Lafuma C (2000) Angiotensin II induces nuclear factor- kappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway. J Mol Cell Cardiol 32:1767–1778

    Article  CAS  PubMed  Google Scholar 

  8. Lee KH, Jang Y, Chung JH (2010) Heat shock protein 90 regulates IkappaB kinase complex and NF-kappaB activation in angiotensin II-induced cardiac cell hypertrophy. Exp Mol Med 42:703–711

    Article  CAS  PubMed  Google Scholar 

  9. Omura T, Yoshiyama M, Kim S, Matsumoto R, Nakamura Y, Izumi Y, Ichijo H, Sudo T, Akioka K, Iwao H, Takeuchi K, Yoshikawa J (2004) Involvement of apoptosis signal-regulating kinase-1 on angiotensin II-induced monocyte chemoattractant protein-1 expression. Arterioscler Thromb Vasc Biol 24:270–275

    Article  CAS  PubMed  Google Scholar 

  10. Maier HJ, Schips TG, Wietelmann A, Kruger M, Brunner C, Sauter M, Klingel K, Bottger T, Braun T, Wirth T (2012) Cardiomyocyte-specific IkappaB kinase (IKK)/NF-kappaB activation induces reversible inflammatory cardiomyopathy and heart failure. Proc Natl Acad Sci USA 109:11794–11799

    Article  CAS  PubMed  Google Scholar 

  11. Zelarayan L, Renger A, Noack C, Zafiriou MP, Gehrke C, van der Nagel R, Dietz R, de Windt L, Bergmann MW (2009) NF-kappaB activation is required for adaptive cardiac hypertrophy. Cardiovasc Res 84:416–424

    Article  CAS  PubMed  Google Scholar 

  12. Timmers L, van Keulen JK, Hoefer IE, Meijs MF, van Middelaar B, den Ouden K, van Echteld CJ, Pasterkamp G, de Kleijn DP (2009) Targeted deletion of nuclear factor kappaB p50 enhances cardiac remodeling and dysfunction following myocardial infarction. Circ Res 104:699–706

    Article  CAS  PubMed  Google Scholar 

  13. Van der Heiden K, Cuhlmann S, le Luong A, Zakkar M, Evans PC (2010) Role of nuclear factor kappaB in cardiovascular health and disease. Clin Sci (Lond) 118:593–605

    Article  Google Scholar 

  14. Gupta S, Purcell NH, Lin A, Sen S (2002) Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy. J Cell Biol 159:1019–1028

    Article  CAS  PubMed  Google Scholar 

  15. Gupta S, Young D, Maitra RK, Gupta A, Popovic ZB, Yong SL, Mahajan A, Wang Q, Sen S (2008) Prevention of cardiac hypertrophy and heart failure by silencing of NF-kappaB. J Mol Biol 375:637–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Young D, Popovic ZB, Jones WK, Gupta S (2008) Blockade of NF-kappaB using IkappaB alpha dominant-negative mice ameliorates cardiac hypertrophy in myotrophin-overexpressed transgenic mice. J Mol Biol 381:559–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  18. Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16:861–865

    Article  CAS  PubMed  Google Scholar 

  19. Latronico MV, Catalucci D, Condorelli G (2007) Emerging role of microRNAs in cardiovascular biology. Circ Res 101:1225–1236

    Article  CAS  PubMed  Google Scholar 

  20. van Rooij E, Olson EN (2007) MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117:2369–2376

    Article  PubMed Central  PubMed  Google Scholar 

  21. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    Article  CAS  PubMed  Google Scholar 

  22. Topkara VK, Mann DL (2011) Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc Drugs Ther 25:171–182

    Article  CAS  PubMed  Google Scholar 

  23. Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW (2006) Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442:82–85

    CAS  PubMed  Google Scholar 

  24. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ichikawa T, Sato F, Terasawa K, Tsuchiya S, Toi M, Tsujimoto G, Shimizu K (2012) Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells. PLoS One 7:e31422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. He J, Jiang S, Li FL, Zhao XJ, Chu EF, Sun MN, Chen MZ, Li H (2013) MicroRNA-30b-5p is involved in the regulation of cardiac hypertrophy by targeting CaMKIIdelta. J Investig Med 61:604–612

    CAS  PubMed  Google Scholar 

  27. Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, Patient R, Boshoff C (2012) The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood 120:5063–5072

    Article  CAS  PubMed  Google Scholar 

  28. Wei C, Kumar S, Kim IK, Gupta S (2012) Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes. PLoS One 7:e42586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wei C, Kim IK, Kumar S, Jayasinghe S, Hong N, Castoldi G, Catalucci D, Jones WK, Gupta S (2013) NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol 228:1433–1442

    Article  CAS  PubMed  Google Scholar 

  30. Masri C, Chandrashekhar Y (2008) Apoptosis: a potentially reversible, meta-stable state of the heart. Heart Fail Rev 13:175–179

    Article  PubMed  Google Scholar 

  31. Schroder D, Heger J, Piper HM, Euler G (2006) Angiotensin II stimulates apoptosis via TGF-beta1 signaling in ventricular cardiomyocytes of rat. J Mol Med (Berl) 84:975–983

    Article  CAS  Google Scholar 

  32. Huang ZP, Neppl RL, Wang DZ (2010) MicroRNAs in cardiac remodeling and disease. J Cardiovasc Transl Res 3:212–218

    Article  PubMed  Google Scholar 

  33. Li P (2010) MicroRNAs in cardiac apoptosis. J Cardiovasc Transl Res 3:219–224

    Article  PubMed  Google Scholar 

  34. Oikonomou E, Siasos G, Tousoulis D, Kokkou E, Genimata V, Zisimos K, Latsios G, Stefanadis C (2013) Diagnostic and therapeutic potentials of microRNAs in heart failure. Curr Top Med Chem 13:1548–1558

    Article  CAS  PubMed  Google Scholar 

  35. Zhou R, Hu G, Gong AY, Chen XM (2010) Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 38:3222–3232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Olarerin-George AO, Anton L, Hwang YC, Elovitz MA, Hogenesch JB (2013) A functional genomics screen for microRNA regulators of NF-kappaB signaling. BMC Biol 11:19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ma X, Becker Buscaglia LE, Barker JR, Li Y (2011) MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 3:159–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Jiang L, Lin C, Song L, Wu J, Chen B, Ying Z, Fang L, Yan X, He M, Li J, Li M (2012) MicroRNA-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-kappaB/IkappaBalpha negative feedback loop. J Clin Invest 122:33–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Weigel AL, Handa JT, Hjelmeland LM (2002) Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. Free Radic Biol Med 33:1419–1432

    Article  CAS  PubMed  Google Scholar 

  40. Wang G, Liem DA, Vondriska TM, Honda HM, Korge P, Pantaleon DM, Qiao X, Wang Y, Weiss JN, Ping P (2005) Nitric oxide donors protect murine myocardium against infarction via modulation of mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 288:H1290–H1295

    Article  CAS  PubMed  Google Scholar 

  41. Vogler M (2012) BCL2A1: the underdog in the BCL2 family. Cell Death Differ 19:67–74

    Article  CAS  PubMed  Google Scholar 

  42. Catz SD, Johnson JL (2001) Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20:7342–7351

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F, Chalbos D, Sonenshein GE (2007) Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 9:470–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by start-up funds from the Texas A&M Health Science Center, College of Medicine, by an American Heart Association-National Scientist Development Grant (0835227N) to S. Gupta (SG). The authors also acknowledge to Central Texas Veterans Affairs Health Care System for providing research facility to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhiranjan Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, C., Li, L. & Gupta, S. NF-κB-mediated miR-30b regulation in cardiomyocytes cell death by targeting Bcl-2. Mol Cell Biochem 387, 135–141 (2014). https://doi.org/10.1007/s11010-013-1878-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1878-1

Keywords

Navigation