Skip to main content

Advertisement

Log in

Fibroblast growth factor-7 facilitates osteogenic differentiation of embryonic stem cells through the activation of ERK/Runx2 signaling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Fibroblast growth factor-7 (FGF7) is known to regulate proliferation and differentiation of cells; however, little information is available on how FGF7 affects the differentiation of embryonic stem cells (ESCs). We examined the effects of FGF7 on proliferation and osteogenic differentiation of mouse ESCs. Exogenous FGF7 addition did not change the proliferation rate of mouse ESCs. In contrast, the addition of FGF7 facilitated the dexamethasone, ascorbic acid, and β-glycerophosphate (DAG)-induced increases in bone-like nodule formation and calcium accumulation. FGF7 also augmented mRNA expression of runt-related transcription factor-2 (Runx2), osterix, bone sialoprotein (BSP), and osteocalcin (OC) in the presence of DAG. FGF7-mediated increases in the mineralization and bone-specific gene expression were almost completely attenuated by pretreating with anti-FGF7 antibody. FGF7 treatment accelerated the DAG-induced activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in the cells. A pharmacological inhibitor specific to ERK, but not to JNK or p38 kinase, dramatically suppressed FGF7-mediated mineralization and accumulation of collagen and OC in the presence of DAG. This suppression was accompanied by the reduction in Runx2, osterix, BSP, and OC mRNA levels, which were increased by FGF7 in the presence of DAG. Collectively, our results suggest that FGF7 stimulates osteogenic differentiation, but not proliferation, in ESCs, by activating ERK/Runx2 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  PubMed  Google Scholar 

  2. D’Andrea LD, Del Gatto A, De Rosa L, Romanelli A, Pedone C (2009) Peptides targeting angiogenesis related growth factor receptors. Curr Pharm Des 15:2414–2429

    Article  PubMed  Google Scholar 

  3. Marie PJ (2012) Fibroblast growth factor signaling controlling bone formation: an update. Gene 498:1–4

    Article  PubMed  CAS  Google Scholar 

  4. Stanier P, Pauws E (2012) Development of the lip and palate: FGF signaling. Front Oral Biol 16:71–80

    Article  PubMed  Google Scholar 

  5. Visco V, Bava FA, d’Alessandro F, Cavallini M, Ziparo V, Torrisi MR (2009) Human colon fibroblasts induce differentiation and proliferation of intestinal epithelial cells through the direct paracrine action of keratinocyte growth factor. J Cell Physiol 220:204–213

    Article  PubMed  CAS  Google Scholar 

  6. Finch PW, Murphy F, Cardinale I, Krueger JG (1997) Altered expression of keratinocyte growth factor and its receptor in psoriasis. Am J Pathol 151:1619–1628

    PubMed  CAS  Google Scholar 

  7. auf demKeller U, Krampert M, Kümin A, Braun S, Werner S (2004) Keratinocyte growth factor: effects on keratinocytes and mechanisms of action. Eur J Cell Biol 83:607–612

    Article  PubMed  Google Scholar 

  8. Finch PW, Rubin JS (2004) Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 91:69–136

    Article  PubMed  CAS  Google Scholar 

  9. Takayama S, Murakami S, Nozaki T, Ikezawa K, Miki Y, Asano T, Terashima A, Okada H (1998) Expression of receptors for basic fibroblast growth factor on human periodontal ligament cells. J Periodontal Res 33:315–322

    Article  PubMed  CAS  Google Scholar 

  10. Beertsen W, McCulloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13:20–40

    Article  PubMed  CAS  Google Scholar 

  11. Hasegawa T, Yoshimura Y, Kikuiri T, Yawaka Y, Takeyama S, Mstsumoto A, Oguchi H, Shirakawa T (2002) Expression of receptor activator of NF-kappaB ligand and osteoprotegerin in culture of human periodontal ligament cells. J Periodontal Res 37:405–411

    Article  PubMed  CAS  Google Scholar 

  12. Emecen P, Akman AC, Hakki SS, Hakki EE, Demiralp B, Tözüm TF, Nohutcu RM (2009) ABM/P-15 modulates proliferation and mRNA synthesis of growth factors of periodontal ligament cells. Acta Odontol Scand 67:65–73

    Article  PubMed  CAS  Google Scholar 

  13. Nakahara H, Misawa H, Hayashi T, Kondo E, Yuasa T, Kubota Y, Seita M, Kawamoto H, Hassan WA, Hassan RA, Javed SM, Tanaka M, Endo H, Noguchi H, Matsumoto S, Takata K, Tashiro Y, Nakaji S, Ozaki T, Kobayashi N (2009) Bone repair by transplantation of hTERT-immortalized human mesenchymal stem cells in mice. Transplantation 88:346–353

    Article  PubMed  Google Scholar 

  14. Cho JH, Itoh T, Sendai Y, Hoshi H (2008) Fibroblast growth factor 7 stimulates in vitro growth of oocytes originating from bovine early antral follicles. Mol Reprod Dev 75:1736–1743

    Article  PubMed  CAS  Google Scholar 

  15. Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N, Cruz-Racelis D, Fuchs E (2009) A two-step mechanisms for stem cell activation during hair regeneration. Cell Stem Cell 4:155–169

    Article  PubMed  CAS  Google Scholar 

  16. Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30:973–981

    Article  PubMed  CAS  Google Scholar 

  17. Moore MA (2002) Cytokine and chemokine networks influencing stem cell proliferation, differentiation, and marrow homing. J Cell Biochem Suppl 38:29–38

    Article  PubMed  Google Scholar 

  18. Choi SC, Kim SJ, Choi JH, Park CY, Shim WJ, Lim DS (2008) Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev 17:725–736

    Article  PubMed  CAS  Google Scholar 

  19. Quarto N, Wan DC, Longaker MT (2008) Molecular mechanisms of FGF-2 inhibitory activity in the osteogenic context of mouse adipose-derived stem cells (mASCs). Bone 42:1040–1052

    Article  PubMed  CAS  Google Scholar 

  20. Eiselleova L, Matulka K, Kriz V, Kunova M, Schmidtova Z, Neradil J, Tichy B, Dvorakova D, Pospisilova S, Hampl A, Dvorak P (2009) A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells 27:1847–1857

    Article  PubMed  CAS  Google Scholar 

  21. Kosaka N, Sakamoto H, Terada M, Ochiya T (2009) Pleiotropic function of FGF-4: its role in development and stem cells. Dev Dyn 238:265–276

    Article  PubMed  CAS  Google Scholar 

  22. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  23. Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139–149

    Article  PubMed  CAS  Google Scholar 

  24. Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A (2006) Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun 349:1–5

    Article  PubMed  CAS  Google Scholar 

  25. Ahn HJ, Lee WJ, Kwack K, Kwon YD (2009) FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS Lett 583:2922–2926

    Article  PubMed  CAS  Google Scholar 

  26. Matsuguchi T, Chiba N, Bandow K, Kakimoto K, Masuda A, Ohnishi T (2009) JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. J Bone Miner Res 24:398–410

    Article  PubMed  CAS  Google Scholar 

  27. Papachristou DJ, Pirttiniemi P, Kantomaa T, Papavassiliou AG, Basdra EK (2005) JNK/ERK-AP-1/Runx2 induction “paves the way” to cartilage load-ignited chondroblastic differentiation. Histochem Cell Biol 124:215–223

    Article  PubMed  CAS  Google Scholar 

  28. Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T (2007) Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem 101:1266–1277

    Article  PubMed  CAS  Google Scholar 

  29. Fan D, Chen Z, Wang D, Guo Z, Qiang Q, Shang Y (2007) Osterix is a key target for mechanical signals in human thoracic ligament flavum cells. J Cell Physiol 211:577–584

    Article  PubMed  CAS  Google Scholar 

  30. Hsu YL, Kuo PL (2008) Diosmetin induces human osteoblastic differentiation through the protein kinase C/p38 and extracellular signal-regulated kinase 1/2 pathway. J Bone Miner Res 23:949–960

    Article  PubMed  CAS  Google Scholar 

  31. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  32. Jeong JH, Choi JY (2011) Interrelationship of Runx2 and estrogen pathway in skeletal tissues. BMB Rep 44:613–618

    Article  PubMed  CAS  Google Scholar 

  33. Kasai T, Bandow K, Suzuki H, Chiba N, Kakimoto K, Ohnishi T, Kawamoto S, Nagaoka E, Matsuguchi T (2009) Osteoblast differentiation is functionally associated with decreased AMP kinase activity. J Cell Physiol 221:740–749

    Article  PubMed  CAS  Google Scholar 

  34. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  PubMed  CAS  Google Scholar 

  35. Franceschi RT, Xiao G (2003) Regulation of the osteoblastspecific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 88:446–454

    Article  PubMed  CAS  Google Scholar 

  36. Phillips JE, Gersbach CA, Wojtowicz AM, García AJ (2006) Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation. J Cell Sci 119:581–591

    Article  PubMed  CAS  Google Scholar 

  37. Fickert S, Schröter-Bobsin U, Groß AF, Hempel U, Wojciechowski C, Rentsch C, Corbeil D, Gu¨nther KP (2011) Human mesenchymal stem cell proliferation and osteogenic differentiation during long-term ex vivo cultivation is not age dependent. J Bone Miner Metab 29:224–235

    Article  PubMed  Google Scholar 

  38. Choe Y, Yu JY, Son YO, Park SM, Kim JG, Shi X, Lee JC (2012) Continuously generated H2O2 stimulates the proliferation and osteoblastic differentiation of human periodontal ligament fibroblasts. J Cell Biochem 113:1426–1436

    Article  PubMed  CAS  Google Scholar 

  39. Zhang P, Wu Y, Dai Q, Fang B, Jiang L (2013) p38-MAPK signaling pathway is not involved in osteogenic differentiation during early response of mesenchymal stem cells to continuous mechanical strain. Mol Cell Biochem 378:19–28

    Article  PubMed  CAS  Google Scholar 

  40. zur Nieden NI, Kempka G, Ahr HJ (2003) In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71:18–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0009123). This study was in part supported by the research funds endowed to Dr. Sung-Ho Kook from Chonbuk National University in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Chae Lee.

Additional information

Young-Mi Jeon and Sung-Ho Kook contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, YM., Kook, SH., Rho, SJ. et al. Fibroblast growth factor-7 facilitates osteogenic differentiation of embryonic stem cells through the activation of ERK/Runx2 signaling. Mol Cell Biochem 382, 37–45 (2013). https://doi.org/10.1007/s11010-013-1716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1716-5

Keywords

Navigation