Skip to main content
Log in

Down-regulation of DNA methyltransferase 3B in staurosporine-induced apoptosis and its mechanism in human hepatocarcinoma cell lines

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Abnormal DNA methylation is one of the important characteristics in tumor cells. Apoptosis plays an essential role in cell survival and processing. It is not clear whether DNA methyltransferases (DNMTs) change in apoptosis and how DNMTs are regulated in apoptosis. In this study, we found that SMMC-7721 or BEL-7404 cells were induced to apoptosis by STS, meanwhile the DNMT3B protein and mRNA level were decreased. To explore the mechanism of DNMT3B down-regulation, we found that the mRNA decay was not changed and core promoter activity of DNMT3B gene was decreased in STS-induced apoptosis. In order to figure out the signal molecule involved in transcriptional regulation of DNMT3B gene by STS, p-JNK, p-ERK, and p-p38 were examined. In STS-induced apoptosis p-JNK level was increased, and p-ERK and p-p38 were decreased. Furthermore, the inhibitor of p-JNK significantly alleviated the decline of DNMT3B protein. We also found that the siRNA of DNMT3B strengthened the cleavage of PARP and pro-caspase-3 as well as up-regulated the p16 gene expression in STS-treated cells. We concluded here that STS-regulated DNMT3B gene expression via p-JNK and down-regulation of DNMT3B-mediated STS-induced apoptosis through the up-regulation p16 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

STS:

Staurosporine

DNMT1/3B:

DNA methyltransferase1/3B

DAPI:

4′,6′-diamidino-2-phenylindole hydrochloride

Chx:

Cycloheximide

Act D:

Actinomycin D

sp:

sp600125

References

  1. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  2. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  3. Omura S, Iwai Y, Hirano A, Nakagawa A, Awaya J, Tsuchya H, Takahashi Y, Masuma R (1977) A new alkaloid AM-2282 OF Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization. J Antibiot (Tokyo) 30:275–282

    Article  CAS  Google Scholar 

  4. Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K, Liu YC, Karin M (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124:601–613

    Article  PubMed  CAS  Google Scholar 

  5. Lei K, Nimnual A, Zong WX, Kennedy NJ, Flavell RA, Thompson CB, Bar-Sagi D, Davis RJ (2002) The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 22:4929–4942

    Article  PubMed  CAS  Google Scholar 

  6. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874

    Article  PubMed  CAS  Google Scholar 

  7. Ventura JJ, Cogswell P, Flavell RA, Baldwin AS Jr, Davis RJ (2004) JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 18:2905–2915

    Article  PubMed  CAS  Google Scholar 

  8. Choi WS, Yoon SY, Chang II, Choi EJ, Rhim H, Jin BK, Oh TH, Krajewski S, Reed JC, Oh YJ (2000) Correlation between structure of Bcl-2 and its inhibitory function of JNK and caspase activity in dopaminergic neuronal apoptosis. J Neurochem 74:1621–1626

    Article  PubMed  CAS  Google Scholar 

  9. Zhang H, Vollmer M, De Geyter M, Durrenberger M, De Geyter C (2005) Apoptosis and differentiation induced by staurosporine in granulosa tumor cells is coupled with activation of JNK and suppression of p38 MAPK. Int J Oncol 26:1575–1580

    PubMed  CAS  Google Scholar 

  10. Kurita S, Higuchi H, Saito Y, Nakamoto N, Takaishi H, Tada S, Saito H, Gores GJ, Hibi T (2010) DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8. Cancer Sci 101:1431–1439

    Article  PubMed  CAS  Google Scholar 

  11. Leu YW, Rahmatpanah F, Shi H, Wei SH, Liu JC, Yan PS, Huang TH (2003) Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res 63:6110–6115

    PubMed  CAS  Google Scholar 

  12. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  13. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  14. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  CAS  Google Scholar 

  15. Xie S, Wang Z, Okano M, Nogami M, Li Y, He WW, Okumura K, Li E (1999) Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 236:87–95

    Article  PubMed  CAS  Google Scholar 

  16. Dobrovic A, Simpfendorfer D (1997) Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 57:3347–3350

    PubMed  CAS  Google Scholar 

  17. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    PubMed  CAS  Google Scholar 

  18. Gonzalez-Zulueta M, Bender CM, Yang AS, Nguyen T, Beart RW, Van Tornout JM, Jones PA (1995) Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 55:4531–4535

    PubMed  CAS  Google Scholar 

  19. Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83:155–158

    Article  PubMed  CAS  Google Scholar 

  20. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530

    PubMed  CAS  Google Scholar 

  21. Beaulieu N, Morin S, Chute IC, Robert MF, Nguyen H, MacLeod AR (2002) An essential role for DNA methyltransferase DNMT3B in cancer cell survival. J Biol Chem 277:28176–28181

    Article  PubMed  CAS  Google Scholar 

  22. Lin RK, Hsieh YS, Lin P, Hsu HS, Chen CY, Tang YA, Lee CF, Wang YC (2010) The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest 120:521–532

    Article  PubMed  CAS  Google Scholar 

  23. Mei C, Sun L, Liu Y, Yang Y, Cai X, Liu M, Yao W, Wang C, Li X, Wang L, Li Z, Shi Y, Qiu S, Fan J, Zha X (2010) Transcriptional and post-transcriptional control of DNA methyltransferase 3B is regulated by phosphatidylinositol 3 kinase/Akt pathway in human hepatocellular carcinoma cell lines. J Cell Biochem 111:158–167

    Article  PubMed  CAS  Google Scholar 

  24. Sun L, Zhao H, Xu Z, Liu Q, Liang Y, Wang L, Cai X, Zhang L, Hu L, Wang G, Zha X (2007) Phosphatidylinositol 3-kinase/protein kinase B pathway stabilizes DNA methyltransferase I protein and maintains DNA methylation. Cell Signal 19:2255–2263

    Article  PubMed  CAS  Google Scholar 

  25. Ventura JJ, Hubner A, Zhang C, Flavell RA, Shokat KM, Davis RJ (2006) Chemical genetic analysis of the time course of signal transduction by JNK. Mol Cell 21:701–710

    Article  PubMed  CAS  Google Scholar 

  26. Chik F, Szyf M (2011) Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors. Carcinogenesis 32:224–232

    Article  PubMed  CAS  Google Scholar 

  27. Li X, Hui AM, Sun L, Hasegawa K, Torzilli G, Minagawa M, Takayama T, Makuuchi M (2004) p16INK4A hypermethylation is associated with hepatitis virus infection, age, and gender in hepatocellular carcinoma. Clin Cancer Res 10:7484–7489

    Article  PubMed  CAS  Google Scholar 

  28. Schagdarsurengin U, Wilkens L, Steinemann D, Flemming P, Kreipe HH, Pfeifer GP, Schlegelberger B, Dammann R (2003) Frequent epigenetic inactivation of the RASSF1A gene in hepatocellular carcinoma. Oncogene 22:1866–1871

    Article  PubMed  CAS  Google Scholar 

  29. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  30. Huang P, Han J, Hui L (2010) MAPK signaling in inflammation-associated cancer development. Protein Cell 1:218–226

    Article  PubMed  CAS  Google Scholar 

  31. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549

    Article  PubMed  CAS  Google Scholar 

  32. Bi W, Xiao L, Jia Y, Wu J, Xie Q, Ren J, Ji G, Yuan Z (2010) C-Jun N-terminal kinase enhances MST1-mediated pro-apoptotic signaling through phosphorylation at serine 82. J Biol Chem 285:6259–6264

    Article  PubMed  CAS  Google Scholar 

  33. Guo X, Wu X, Ren L, Liu G, Li L (2011) Epigenetic mechanisms of amyloid-beta production in anisomycin-treated SH-SY5Y cells. Neuroscience 194:272–281

    Article  PubMed  CAS  Google Scholar 

  34. Sarkar S, Abujamra AL, Loew JE, Forman LW (2011) Perrine SP and Faller DV: histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Res 31:2723–2732

    PubMed  CAS  Google Scholar 

  35. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14:156–165

    Article  PubMed  CAS  Google Scholar 

  36. Kim JK, Pedram A, Razandi M, Levin ER (2006) Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem 281:6760–6767

    Article  PubMed  CAS  Google Scholar 

  37. Liggett WH Jr, Sidransky D (1998) Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 16:1197–1206

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Sci-Tech Special Project of China Grant (2012ZX10002011-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Zha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Yin, P., Mei, C. et al. Down-regulation of DNA methyltransferase 3B in staurosporine-induced apoptosis and its mechanism in human hepatocarcinoma cell lines. Mol Cell Biochem 376, 111–119 (2013). https://doi.org/10.1007/s11010-012-1556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1556-8

Keywords

Navigation