Skip to main content
Log in

EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human pancreatic cancer is currently one of the fourth leading causes of cancer-related mortality with a 5-year survival rate of less than 5 %. Since pancreatic carcinoma is largely refractory to conventional therapies, there is a strong medical need for the development of novel and innovative cancer preventive strategies. The forkhead transcription factors of the O class (FOXO) play a major role in cell proliferation, angiogenesis, metastasis, and tumorigenesis. The objectives of this study were to examine whether FKHRL1/FOXO3a modulates antitumor activity of (−)-epigallocatechin-3-gallate (EGCG), an active ingredient in green tea, in pancreatic cancer model in vivo. PANC-1 cells were orthotopically implanted into Balb c nude mice and gavaged with EGCG after tumor formation. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of PI3K, AKT, ERK, and FOXO3a/FKHRL1 and its target genes were measured by the western blot analysis and/or q-RT-PCR. FOXO-DNA binding was measured by gel shift assay. EGCG-treated mice showed significant inhibition in tumor growth which was associated with reduced phosphorylation of ERK, PI3K, AKT, and FKHRL1/FOXO3a, and modulation of FOXO target genes. EGCG induced apoptosis by upregulating Bim and activating caspase-3. EGCG modulated markers of cell cycle (p27/KIP1), angiogenesis (CD31, VEGF, IL-6, IL-8, SEMA3F, and HIF1α), and metastasis (MMP2 and MMP7). The inhibition of VEGF by EGCG was associated with suppression of neuropilin. EGCG inhibited epithelial-mesenchymal transition by upregulating the expression of E-cadherin and inhibiting the expression of N-cadherin and Zeb1. These data suggest that EGCG inhibits pancreatic cancer orthotopic tumor growth, angiogenesis, and metastasis which are associated with inhibition of PI3K/AKT and ERK pathways and activation of FKHRL1/FOXO3a. As a conclusion, EGCG can be used for the prevention and/or treatment of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bHLH:

Basic helix-loop-helix

Cbp:

CREB-binding protein

EC:

Endothelial cells

ECM:

Extracellular matrix

EGCG:

(−)-Epigallocatechin-3-gallate

ERK1/2:

Extracellular signal-regulated kinase

EMT:

Epithelial-mesenchymal transition

FOXO:

Forkhead transcription factors of the O class

HREs:

Hypoxia response elements

HIF:

Hypoxia-inducible factor

MMP:

Matrix metalloproteinases

NRP2:

Neuropilin-2

PI3K:

Phosphoinositide 3-kinase

PDA:

Pancreatic ductal adenocarcinoma

Pcaf:

p300/CBP-associated factors

SEMA 3F:

Semaphorin 3F

VEGF:

Vascular endothelial growth factor

References

  1. Warshaw AL, Fernandez-del Castillo C (1992) Pancreatic carcinoma. N Engl J Med 326:455–465

    Article  PubMed  CAS  Google Scholar 

  2. Magee CJ, Ghaneh P, Neoptolemos JP (2002) Surgical and medical therapy for pancreatic carcinoma. Best Pract Res Clin Gastroenterol 16:435–455

    Article  PubMed  Google Scholar 

  3. Li D (2001) Molecular epidemiology of pancreatic cancer. Cancer J 7:259–265

    PubMed  CAS  Google Scholar 

  4. Gold EB, Goldin SB (1998) Epidemiology of and risk factors for pancreatic cancer. Surg Oncol Clin N Am 7:67–91

    PubMed  CAS  Google Scholar 

  5. Jaffee EM, Hruban RH, Canto M, Kern SE (2002) Focus on pancreas cancer. Cancer Cell 2:25–28

    Article  PubMed  CAS  Google Scholar 

  6. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Sarkar FH (2011) Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 8:27–33

    Article  PubMed  CAS  Google Scholar 

  7. Li J, Wientjes MG, Au JL (2010) Pancreatic cancer: pathobiology, treatment options, and drug delivery. AAPS J 12:223–232

    Article  PubMed  CAS  Google Scholar 

  8. Chen D, Wan SB, Yang H, Yuan J, Chan TH, Dou QP (2011) EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv Clin Chem 53:155–177

    Article  PubMed  CAS  Google Scholar 

  9. Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439

    Article  PubMed  CAS  Google Scholar 

  10. Lambert JD, Yang CS (2003) Mechanisms of cancer prevention by tea constituents. J Nutr 133:3262S–3267S

    PubMed  CAS  Google Scholar 

  11. Yang CS, Wang H (2011) Mechanistic issues concerning cancer prevention by tea catechins. Mol Nutr Food Res 55:819–831

    Article  PubMed  CAS  Google Scholar 

  12. Shankar S, Ganapathy S, Srivastava RK (2007) Green tea polyphenols: biology and therapeutic implications in cancer. Front Biosci 12:4881–4899

    Article  PubMed  CAS  Google Scholar 

  13. Ahn WS, Huh SW, Bae SM, Lee IP, Lee JM, Namkoong SE, Kim CK, Sin JI (2003) A major constituent of green tea, EGCG, inhibits the growth of a human cervical cancer cell line, CaSki cells, through apoptosis, G(1) arrest, and regulation of gene expression. DNA Cell Biol 22:217–224

    Article  PubMed  CAS  Google Scholar 

  14. Manson MM, Farmer PB, Gescher A, Steward WP (2005) Innovative agents in cancer prevention. Recent Results Cancer Res 166:257–275

    Article  PubMed  CAS  Google Scholar 

  15. Park OJ, Surh YJ (2004) Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicol Lett 150:43–56

    Article  PubMed  CAS  Google Scholar 

  16. Lyn-Cook BD, Rogers T, Yan Y, Blann EB, Kadlubar FF, Hammons GJ (1999) Chemopreventive effects of tea extracts and various components on human pancreatic and prostate tumor cells in vitro. Nutr Cancer 35:80–86

    Article  PubMed  CAS  Google Scholar 

  17. Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82:1807–1821

    Article  PubMed  CAS  Google Scholar 

  18. Yang CS, Sang S, Lambert JD, Hou Z, Ju J, Lu G (2006) Possible mechanisms of the cancer-preventive activities of green tea. Mol Nutr Food Res 50:170–175

    Article  PubMed  CAS  Google Scholar 

  19. Kurbitz C, Heise D, Redmer T, Goumas F, Arlt A, Lemke J, Rimbach G, Kalthoff H, Trauzold A (2011) Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells. Cancer Sci 102:728–734

    Article  PubMed  Google Scholar 

  20. Shankar S, Ganapathy S, Hingorani SR, Srivastava RK (2008) EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13:440–452

    Article  PubMed  Google Scholar 

  21. Shankar S, Suthakar G, Srivastava RK (2007) Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front Biosci 12:5039–5051

    Article  PubMed  CAS  Google Scholar 

  22. Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK (2012) Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 131:30–40

    Article  PubMed  CAS  Google Scholar 

  23. Tang SN, Fu J, Shankar S, Srivastava RK (2012) EGCG enhances the therapeutic potential of gemcitabine and CP690550 by inhibiting STAT3 signaling pathway in human pancreatic cancer. PLoS One 7:e31067

    Article  PubMed  CAS  Google Scholar 

  24. Vu HA, Beppu Y, Chi HT, Sasaki K, Yamamoto H, Xinh PT, Tanii T, Hara Y, Watanabe T, Sato Y, Ohdomari I (2010) Green tea epigallocatechin gallate exhibits anticancer effect in human pancreatic carcinoma cells via the inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor. J Biomed Biotechnol 2010:290516

    Article  PubMed  Google Scholar 

  25. Katoh M, Katoh M (2004) Human FOX gene family (review). Int J Oncol 25:1495–1500

    PubMed  CAS  Google Scholar 

  26. Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC (1998) Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics 47:187–199

    Article  PubMed  CAS  Google Scholar 

  27. Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380:297–309

    Article  Google Scholar 

  28. Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR (2000) Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 20:8969–8982

    Article  PubMed  CAS  Google Scholar 

  29. Dijkers PF, Birkenkamp KU, Lam EW, Thomas NS, Lammers JW, Koenderman L, Coffer PJ (2002) FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J Cell Biol 156:531–542

    Article  PubMed  CAS  Google Scholar 

  30. Schlieman MG, Fahy BN, Ramsamooj R, Beckett L, Bold RJ (2003) Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br J Cancer 89:2110–2115

    Article  PubMed  CAS  Google Scholar 

  31. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    PubMed  CAS  Google Scholar 

  32. Ozawa F, Friess H, Kleeff J, Xu ZW, Zimmermann A, Sheikh MS, Buchler MW (2001) Effects and expression of TRAIL and its apoptosis-promoting receptors in human pancreatic cancer. Cancer Lett 163:71–81

    Article  PubMed  CAS  Google Scholar 

  33. Dallas NA, Gray MJ, Xia L, Fan F, van Buren G 2nd, Gaur P, Samuel S, Lim SJ, Arumugam T, Ramachandran V, Wang H, Ellis LM (2008) Neuropilin-2-mediated tumor growth and angiogenesis in pancreatic adenocarcinoma. Clin Cancer Res 14:8052–8060

    Article  PubMed  CAS  Google Scholar 

  34. Li M, Yang H, Chai H, Fisher WE, Wang X, Brunicardi FC, Yao Q, Chen C (2004) Pancreatic carcinoma cells express neuropilins and vascular endothelial growth factor, but not vascular endothelial growth factor receptors. Cancer 101:2341–2350

    Article  PubMed  CAS  Google Scholar 

  35. Li M, Zhang Y, Feurino LW, Wang H, Fisher WE, Brunicardi FC, Chen C, Yao Q (2008) Interleukin-8 increases vascular endothelial growth factor and neuropilin expression and stimulates ERK activation in human pancreatic cancer. Cancer Sci 99:733–737

    Article  PubMed  CAS  Google Scholar 

  36. Shankar S, Chen Q, Srivastava RK (2008) Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. J Mol Signal 3:7

    Article  PubMed  Google Scholar 

  37. Roy SK, Srivastava RK, Shankar S (2010) Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J Mol Signal 5:10. doi:10.1186/1750-2187-5-10

    Article  PubMed  Google Scholar 

  38. Folkman J (2003) Angiogenesis and proteins of the hemostatic system. J Thromb Haemost 1:1681–1682

    Article  PubMed  CAS  Google Scholar 

  39. Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C (2011) IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res 71:5296–5306

    Article  PubMed  CAS  Google Scholar 

  40. Palena C, Hamilton DH, Fernando RI (2012) Influence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment. Future Oncol 8:713–722

    Article  PubMed  CAS  Google Scholar 

  41. Coma S, Shimizu A, Klagsbrun M (2011) Hypoxia induces tumor and endothelial cell migration in a semaphorin 3F- and VEGF-dependent manner via transcriptional repression of their common receptor neuropilin 2. Cell Adh Migr 5:266–275

    Article  PubMed  Google Scholar 

  42. Kusy S, Potiron V, Zeng C, Franklin W, Brambilla E, Minna J, Drabkin HA, Roche J (2005) Promoter characterization of Semaphorin SEMA3F, a tumor suppressor gene. Biochim Biophys Acta 1730:66–76

    Article  PubMed  CAS  Google Scholar 

  43. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904

    Article  PubMed  CAS  Google Scholar 

  44. Kraljevic Pavelic S, Sedic M, Bosnjak H, Spaventi S, Pavelic K (2011) Metastasis: new perspectives on an old problem. Mol Cancer 10:22

    Article  PubMed  Google Scholar 

  45. McCarthy N (2009) Metastasis: route master. Nat Rev Cancer 9:610

    Article  PubMed  CAS  Google Scholar 

  46. McCarthy N (2009) Metastasis: influencing bad behaviour. Nat Rev Cancer 9:609

    Article  PubMed  CAS  Google Scholar 

  47. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  PubMed  CAS  Google Scholar 

  48. Nordigarden A, Kraft M, Eliasson P, Labi V, Lam EW, Villunger A, Jonsson JI (2009) BH3-only protein Bim more critical than Puma in tyrosine kinase inhibitor-induced apoptosis of human leukemic cells and transduced hematopoietic progenitors carrying oncogenic FLT3. Blood 113:2302–2311

    Article  PubMed  Google Scholar 

  49. Roy SK, Chen Q, Fu J, Shankar S, Srivastava RK (2011) Resveratrol inhibits growth of orthotopic pancreatic tumors through activation of FOXO transcription factors. PLoS One 6:e25166

    Article  PubMed  CAS  Google Scholar 

  50. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  PubMed  CAS  Google Scholar 

  51. Tang TT, Dowbenko D, Jackson A, Toney L, Lewin DA, Dent AL, Lasky LA (2002) The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor. J Biol Chem 277:14255–14265

    Article  PubMed  CAS  Google Scholar 

  52. Davis R, Singh KP, Kurzrock R, Shankar S (2009) Sulforaphane inhibits angiogenesis through activation of FOXO transcription factors. Oncol Rep 22:1473–1478

    PubMed  CAS  Google Scholar 

  53. Srivastava RK, Unterman TG, Shankar S (2010) FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol Cell Biochem 337:201–212

    Article  PubMed  CAS  Google Scholar 

  54. Uddin S, Hussain AR, Siraj AK, Manogaran PS, Al-Jomah NA, Moorji A, Atizado V, Al-Dayel F, Belgaumi A, El-Solh H, Ezzat A, Bavi P, Al-Kuraya KS (2006) Role of phosphatidylinositol 3′-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood 108:4178–4186

    Article  PubMed  CAS  Google Scholar 

  55. Daitoku H, Fukamizu A (2007) FOXO transcription factors in the regulatory networks of longevity. J Biochem 141:769–774

    Article  PubMed  CAS  Google Scholar 

  56. Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    Article  PubMed  CAS  Google Scholar 

  57. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  PubMed  CAS  Google Scholar 

  58. Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia- inducible factor 1. Crit Rev Oncol Hematol 59:15–26

    Article  PubMed  Google Scholar 

  59. Fong GH (2008) Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 11:121–140

    Article  PubMed  Google Scholar 

  60. Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17:3005–3015

    Article  PubMed  CAS  Google Scholar 

  61. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    Article  PubMed  CAS  Google Scholar 

  62. Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271:C1172–C1180

    PubMed  CAS  Google Scholar 

  63. Barnhart BC, Simon MC (2007) Metastasis and stem cell pathways. Cancer Metastasis Rev 26:261–271

    Article  PubMed  CAS  Google Scholar 

  64. Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev 29:351–378

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank our lab members for critical reading of the manuscript. This work was supported in part by the Grants from the National Institutes of Health (R01CA125262, RO1CA114469 and RO1CA125262-02S1) and Kansas Bioscience Authority.

Conflict of interest

The authors have declared no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankar, S., Marsh, L. & Srivastava, R.K. EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin. Mol Cell Biochem 372, 83–94 (2013). https://doi.org/10.1007/s11010-012-1448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1448-y

Keywords

Navigation