Skip to main content
Log in

Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P3

Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although the lipid mediator sphingosine 1-phosphate (S1P) has been identified to induce cell growth arrest of human keratinocytes, the sphingolipid effectively protects these epidermal cells from apoptosis. The molecular mechanism of the anti-apoptotic action induced by S1P is less characterized. Apart from S1P, endogenously produced nitric oxide (NO) has been recognized as a potent modulator of apoptosis in keratinocytes. Therefore, it was of great interest to elucidate whether S1P protects human keratinocytes via a NO-dependent signalling pathway. Indeed, S1P induced an activation of endothelial nitric oxide synthase (eNOS) in human keratinocytes leading to an enhanced formation of NO. Most interestingly, the cell protective effect of S1P was almost completely abolished in the presence of the eNOS inhibitor L-NAME as well as in eNOS-deficient keratinocytes indicating that the sphingolipid metabolite S1P protects human keratinocytes from apoptosis via eNOS activation and subsequent production of protective amounts of NO. It is well established that most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Therefore, the involvement of S1P-receptor subtypes in S1P-mediated eNOS activation has been examined. Indeed, this study clearly shows that the S1P3 is the exclusive receptor subtype in human keratinocytes which mediates eNOS activation and NO formation in response to S1P. In congruence, when the S1P3 receptor subtype is abrogated, S1P almost completely lost its ability to protect human keratinocytes from apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jungersted JM, Scheer H, Mempel M, Baurecht H, Cifuentes L, Hogh JK, Hellgren LI, Jemec GB, Agner T, Weidinger S (2010) Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy 65:911–918

    Article  CAS  PubMed  Google Scholar 

  2. Choi H, Kim S, Kim HJ, Kim KM, Lee CH, Shin JH, Noh M (2010) Sphingosylphosphorylcholine down-regulates filaggrin gene transcription through NOX5-based NADPH oxidase and cyclooxygenase-2 in human keratinocytes. Biochem Pharmacol 80:95–103

    Article  CAS  PubMed  Google Scholar 

  3. Kim S, Hong I, Hwang JS, Choi JK, Rho HS, Kim DH, Chang I, Lee SH, Lee MO (2006) Phytosphingosine stimulates the differentiation of human keratinocytes and inhibits TPA-induced inflammatory epidermal hyperplasia in hairless mouse skin. Mol Med 12:17–24

    Article  CAS  PubMed  Google Scholar 

  4. Sandhoff R (2010) Very long chain sphingolipids: tissue expression, function and synthesis. FEBS Lett 584:1907–1913

    Article  CAS  PubMed  Google Scholar 

  5. Herzinger T, Kleuser B, Schafer-Korting M, Korting HC (2007) Sphingosine-1-phosphate signaling and the skin. Am J Clin Dermatol 8:329–336

    Article  PubMed  Google Scholar 

  6. Bektas M, Orfanos CE, Geilen CC (2000) Different vitamin D analogues induce sphingomyelin hydrolysis and apoptosis in the human keratinocyte cell line HaCaT. Cell Mol Biol (Noisy-le-grand) 46:111–119

    CAS  Google Scholar 

  7. Uchida Y, Murata S, Schmuth M, Behne MJ, Lee JD, Ichikawa S, Elias PM, Hirabayashi Y, Holleran WM (2002) Glucosylceramide synthesis and synthase expression protect against ceramide-induced stress. J Lipid Res 43:1293–1302

    CAS  PubMed  Google Scholar 

  8. Schuppel M, Kurschner U, Kleuser U, Schafer-Korting M, Kleuser B (2008) Sphingosine 1-phosphate restrains insulin-mediated keratinocyte proliferation via inhibition of Akt through the S1P2 receptor subtype. J Invest Dermatol 128:1747–1756

    Article  PubMed  Google Scholar 

  9. Vogler R, Sauer B, Kim DS, Schafer-Korting M, Kleuser B (2003) Sphingosine-1-phosphate and its potentially paradoxical effects on critical parameters of cutaneous wound healing. J Invest Dermatol 120:693–700

    Article  CAS  PubMed  Google Scholar 

  10. Manggau M, Kim DS, Ruwisch L, Vogler R, Korting HC, Schafer-Korting M, Kleuser B (2001) 1Alpha, 25-dihydroxyvitamin D3 protects human keratinocytes from apoptosis by the formation of sphingosine-1-phosphate. J Invest Dermatol 117:1241–1249

    Article  CAS  PubMed  Google Scholar 

  11. Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415

    Article  CAS  PubMed  Google Scholar 

  12. Pyne NJ, Waters C, Moughal NA, Sambi BS, Pyne S (2003) Receptor tyrosine kinase–GPCR signal complexes. Biochem Soc Trans 31:1220–1225

    Article  CAS  PubMed  Google Scholar 

  13. Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T, Milstien S, Spiegel S (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465:1084–1088

    Article  CAS  PubMed  Google Scholar 

  14. Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, Spiegel S (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325:1254–1257

    Article  CAS  PubMed  Google Scholar 

  15. Nieuwenhuis B, Luth A, Chun J, Huwiler A, Pfeilschifter J, Schafer-Korting M, Kleuser B (2009) Involvement of the ABC-transporter ABCC1 and the sphingosine 1-phosphate receptor subtype S1P(3) in the cytoprotection of human fibroblasts by the glucocorticoid dexamethasone. J Mol Med (Berl) 87:645–657

    Article  CAS  Google Scholar 

  16. Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH (2004) G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92:949–966

    Article  CAS  PubMed  Google Scholar 

  17. Spiegel S, Milstien S (2003) Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways. Biochem Soc Trans 31:1216–1219

    Article  CAS  PubMed  Google Scholar 

  18. Cals-Grierson MM, Ormerod AD (2004) Nitric oxide function in the skin. Nitric Oxide 10:179–193

    Article  CAS  PubMed  Google Scholar 

  19. Weller R, Schwentker A, Billiar TR, Vodovotz Y (2003) Autologous nitric oxide protects mouse and human keratinocytes from ultraviolet B radiation-induced apoptosis. Am J Physiol Cell Physiol 284:C1140–C1148

    CAS  PubMed  Google Scholar 

  20. Andrew PJ, Mayer B (1999) Enzymatic function of nitric oxide synthases. Cardiovasc Res 43:521–531

    Article  CAS  PubMed  Google Scholar 

  21. Marletta MA (1993) Nitric oxide synthase structure and mechanism. J Biol Chem 268:12231–12234

    CAS  PubMed  Google Scholar 

  22. Geller DA, Billiar TR (1998) Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 17:7–23

    Article  CAS  PubMed  Google Scholar 

  23. Kone BC, Kuncewicz T, Zhang W, Yu ZY (2003) Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Am J Physiol Renal Physiol 285:F178–F190

    CAS  PubMed  Google Scholar 

  24. Ikeyama K, Denda M (2010) Effect of endothelial nitric oxide synthase on epidermal permeability barrier recovery after disruption. Br J Dermatol 163:915–919

    Article  CAS  PubMed  Google Scholar 

  25. Ikeyama K, Denda S, Tsutsumi M, Denda M (2010) Neuronal nitric oxide synthase in epidermis is involved in cutaneous circulatory response to mechanical stimulation. J Invest Dermatol 130:1158–1166

    Article  CAS  PubMed  Google Scholar 

  26. Bruch-Gerharz D, Fehsel K, Suschek C, Michel G, Ruzicka T, Kolb-Bachofen V (1996) A proinflammatory activity of interleukin 8 in human skin: expression of the inducible nitric oxide synthase in psoriatic lesions and cultured keratinocytes. J Exp Med 184:2007–2012

    Article  CAS  PubMed  Google Scholar 

  27. Ormerod AD, Weller R, Copeland P, Benjamin N, Ralston SH, Grabowksi P, Herriot R (1998) Detection of nitric oxide and nitric oxide synthases in psoriasis. Arch Dermatol Res 290:3–8

    Article  CAS  PubMed  Google Scholar 

  28. Sirsjo A, Karlsson M, Gidlof A, Rollman O, Torma H (1996) Increased expression of inducible nitric oxide synthase in psoriatic skin and cytokine-stimulated cultured keratinocytes. Br J Dermatol 134:643–648

    Article  CAS  PubMed  Google Scholar 

  29. Hecker M, Cattaruzza M, Wagner AH (1999) Regulation of inducible nitric oxide synthase gene expression in vascular smooth muscle cells. Gen Pharmacol 32:9–16

    Article  CAS  PubMed  Google Scholar 

  30. Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM (2001) Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun 282:1075–1079

    Article  CAS  PubMed  Google Scholar 

  31. Dimmeler S, Zeiher AM (1997) Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide. Nitric Oxide 1:275–281

    Article  CAS  PubMed  Google Scholar 

  32. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88:E68–E75

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Wallerath T, Forstermann U (2002) Physiological mechanisms regulating the expression of endothelial-type NO synthase. Nitric Oxide 7:132–147

    Article  CAS  PubMed  Google Scholar 

  34. Sessa WC (2004) eNOS at a glance. J Cell Sci 117:2427–2429

    Article  CAS  PubMed  Google Scholar 

  35. Blot V, Jacquemard U, Reissig HU, Kleuser B (2009) Practical syntheses of sphingosine-1-phosphate and analogues. Synthesis 5:759–766

    Google Scholar 

  36. Yamaoka J, Sasaki M, Miyachi Y (2000) Ultraviolet B radiation downregulates inducible nitric oxide synthase expression induced by interferon-gamma or tumor necrosis factor-alpha in murine keratinocyte Pam 212 cells. Arch Dermatol Res 292:312–319

    Article  CAS  PubMed  Google Scholar 

  37. Salerno L, Sorrenti V, Di Giacomo C, Romeo G, Siracusa MA (2002) Progress in the development of selective nitric oxide synthase (NOS) inhibitors. Curr Pharm Des 8:177–200

    Article  CAS  PubMed  Google Scholar 

  38. Morales-Ruiz M, Lee MJ, Zollner S, Gratton JP, Scotland R, Shiojima I, Walsh K, Hla T, Sessa WC (2001) Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J Biol Chem 276:19672–19677

    Article  CAS  PubMed  Google Scholar 

  39. Tolle M, Levkau B, Keul P, Brinkmann V, Giebing G, Schonfelder G, Schafers M, von Wnuck Lipinski K, Jankowski J, Jankowski V, Chun J, Zidek W, Van der Giet M (2005) Immunomodulator FTY720 induces eNOS-dependent arterial vasodilatation via the lysophospholipid receptor S1P3. Circ Res 96:913–920

    Article  PubMed  Google Scholar 

  40. Bruch-Gerharz D, Ruzicka T, Kolb-Bachofen V (1998) Nitric oxide and its implications in skin homeostasis and disease—a review. Arch Dermatol Res 290:643–651

    Article  CAS  PubMed  Google Scholar 

  41. Weller R, Pattullo S, Smith L, Golden M, Ormerod A, Benjamin N (1996) Nitric oxide is generated on the skin surface by reduction of sweat nitrate. J Invest Dermatol 107:327–331

    Article  CAS  PubMed  Google Scholar 

  42. Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin SL, Nussbaum R, Novitskaya I, Carbonaro H, Cardinale I, Kikuchi T, Gilleaudeau P, Sullivan-Whalen M, Wittkowski KM, Papp K, Garovoy M, Dummer W, Steinman RM, Krueger JG (2005) Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc Natl Acad Sci USA 102:19057–19062

    Article  CAS  PubMed  Google Scholar 

  43. Massi D, Franchi A, Sardi I, Magnelli L, Paglierani M, Borgognoni L, Maria Reali U, Santucci M (2001) Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions. J Pathol 194:194–200

    Article  CAS  PubMed  Google Scholar 

  44. Kim YM, Bombeck CA, Billiar TR (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 84:253–256

    Article  CAS  PubMed  Google Scholar 

  45. Yamaoka J, Kawana S, Miyachi Y (2004) Nitric oxide inhibits ultraviolet B-induced murine keratinocyte apoptosis by regulating apoptotic signaling cascades. Free Radic Res 38:943–950

    Article  CAS  PubMed  Google Scholar 

  46. Liu W, Wu S (2010) Differential roles of nitric oxide synthases in regulation of ultraviolet B light-induced apoptosis. Nitric Oxide 23:199–205

    Article  CAS  PubMed  Google Scholar 

  47. Albrecht EW, Stegeman CA, Heeringa P, Henning RH, van Goor H (2003) Protective role of endothelial nitric oxide synthase. J Pathol 199:8–17

    Article  PubMed  Google Scholar 

  48. Brouet A, Sonveaux P, Dessy C, Moniotte S, Balligand JL, Feron O (2001) Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res 89:866–873

    Article  CAS  PubMed  Google Scholar 

  49. Duranski MR, Elrod JW, Calvert JW, Bryan NS, Feelisch M, Lefer DJ (2006) Genetic overexpression of eNOS attenuates hepatic ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 291:H2980–H2986

    Article  CAS  PubMed  Google Scholar 

  50. Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA, Ma XL (2002) Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 105:1497–1502

    Article  CAS  PubMed  Google Scholar 

  51. Lin LY, Lin CY, Ho FM, Liau CS (2005) Up-regulation of the association between heat shock protein 90 and endothelial nitric oxide synthase prevents high glucose-induced apoptosis in human endothelial cells. J Cell Biochem 94:194–201

    Article  CAS  PubMed  Google Scholar 

  52. Murphy PR, Limoges M, Dodd F, Boudreau RT, Too CK (2001) Fibroblast growth factor-2 stimulates endothelial nitric oxide synthase expression and inhibits apoptosis by a nitric oxide-dependent pathway in Nb2 lymphoma cells. Endocrinology 142:81–88

    Article  CAS  PubMed  Google Scholar 

  53. Prorock AJ, Hafezi-Moghadam A, Laubach VE, Liao JK, Ley K (2003) Vascular protection by estrogen in ischemia-reperfusion injury requires endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol 284:H133–H140

    CAS  PubMed  Google Scholar 

  54. Goetzl EJ, Kong Y, Mei B (1999) Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax. J Immunol 162:2049–2056

    CAS  PubMed  Google Scholar 

  55. Osawa Y, Banno Y, Nagaki M, Brenner DA, Naiki T, Nozawa Y, Nakashima S, Moriwaki H (2001) TNF-alpha-induced sphingosine 1-phosphate inhibits apoptosis through a phosphatidylinositol 3-kinase/Akt pathway in human hepatocytes. J Immunol 167:173–180

    CAS  PubMed  Google Scholar 

  56. Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, Schober O, Hildebrand R, Schulz R, Heusch G, Haude M, von Wnuck Lipinski K, Herzog C, Schmitz M, Erbel R, Chun J, Levkau B (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114:1403–1409

    Article  CAS  PubMed  Google Scholar 

  57. Xia P, Wang L, Gamble JR, Vadas MA (1999) Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J Biol Chem 274:34499–34505

    Article  CAS  PubMed  Google Scholar 

  58. Sauer B, Gonska H, Manggau M, Kim DS, Schraut C, Schafer-Korting M, Kleuser B (2005) Sphingosine 1-phosphate is involved in cytoprotective actions of calcitriol in human fibroblasts and enhances the intracellular Bcl-2/Bax rheostat. Pharmazie 60:298–304

    CAS  PubMed  Google Scholar 

  59. Suschek CV, Krischel V, Bruch-Gerharz D, Berendji D, Krutmann J, Kroncke KD, Kolb-Bachofen V (1999) Nitric oxide fully protects against UVA-induced apoptosis in tight correlation with Bcl-2 up-regulation. J Biol Chem 274:6130–6137

    Article  CAS  PubMed  Google Scholar 

  60. Waeber C, Blondeau N, Salomone S (2004) Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News Perspect 17:365–382

    Article  CAS  PubMed  Google Scholar 

  61. Igarashi J, Michel T (2001) Sphingosine 1-phosphate and isoform-specific activation of phosphoinositide 3-kinase beta. Evidence for divergence and convergence of receptor-regulated endothelial nitric-oxide synthase signaling pathways. J Biol Chem 276:36281–36288

    Article  CAS  PubMed  Google Scholar 

  62. Rikitake Y, Hirata K, Kawashima S, Ozaki M, Takahashi T, Ogawa W, Inoue N, Yokoyama M (2002) Involvement of endothelial nitric oxide in sphingosine-1-phosphate-induced angiogenesis. Arterioscler Thromb Vasc Biol 22:108–114

    Article  CAS  PubMed  Google Scholar 

  63. Kim JH, Go HY, Jin DH, Kim HP, Hong MH, Chung WY, Park JH, Jang JB, Jung H, Shin YC, Kim SH, Ko SG (2008) Inhibition of the PI3K-Akt/PKB survival pathway enhanced an ethanol extract of Rhus verniciflua. Stokes-induced apoptosis via a mitochondrial pathway in AGS gastric cancer cell lines. Cancer Lett 265:197–205

    Article  CAS  PubMed  Google Scholar 

  64. Lichte K, Rossi R, Danneberg K, ter Braak M, Kurschner U, Jakobs KH, Kleuser B, Meyer zu Heringdorf D (2008) Lysophospholipid receptor-mediated calcium signaling in human keratinocytes. J Invest Dermatol 128:1487–1498

    Article  CAS  PubMed  Google Scholar 

  65. Fieber CB, Eldridge J, Taha TA, Obeid LM, Muise-Helmericks RC (2006) Modulation of total Akt kinase by increased expression of a single isoform: requirement of the sphingosine-1-phosphate receptor, Edg3/S1P3, for the VEGF-dependent expression of Akt3 in primary endothelial cells. Exp Cell Res 312:1164–1173

    Article  CAS  PubMed  Google Scholar 

  66. Yamada M, Banno Y, Takuwa Y, Koda M, Hara A, Nozawa Y (2004) Overexpression of phospholipase D prevents actinomycin D-induced apoptosis through potentiation of phosphoinositide 3-kinase signalling pathways in Chinese-hamster ovary cells. Biochem J 378:649–656

    Article  CAS  PubMed  Google Scholar 

  67. Kwon YG, Min JK, Kim KM, Lee DJ, Billiar TR, Kim YM (2001) Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J Biol Chem 276:10627–10633

    Article  CAS  PubMed  Google Scholar 

  68. Corsetti G, D’Antona G, Dioguardi FS, Rezzani R (2010) Topical application of dressing with amino acids improves cutaneous wound healing in aged rats. Acta Histochem 112:497–507

    Article  CAS  PubMed  Google Scholar 

  69. Debats IB, Wolfs TG, Gotoh T, Cleutjens JP, Peutz-Kootstra CJ, van der Hulst RR (2009) Role of arginine in superficial wound healing in man. Nitric Oxide 21:175–183

    Article  CAS  PubMed  Google Scholar 

  70. Prakash H, Luth A, Grinkina N, Holzer D, Wadgaonkar R, Gonzalez AP, Anes E, Kleuser B (2010) Sphingosine kinase-1 (SphK-1) regulates Mycobacterium smegmatis infection in macrophages. PLoS ONE 5:e10657

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Deutsche Forschungsgemeinschaft to B.K. (Kl 988 7-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Kleuser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, E.I., Potteck, H., Schüppel, M. et al. Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P3 . Mol Cell Biochem 371, 165–176 (2012). https://doi.org/10.1007/s11010-012-1433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1433-5

Keywords

Navigation