Skip to main content
Log in

Mouse Tcf3 represses canonical Wnt signaling by either competing for β-catenin binding or through occupation of DNA-binding sites

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tcf3 acts as a transcription factor controlling gene expression in canonical Wnt signaling. In this study we show that mouse Tcf3 represses canonical Wnt signaling in mouse neural stem cells and in human HEK 293 cells. We demonstrate that mouse Tcf3 mediates repression of both moderate and high levels of canonical Wnt signaling, by either competing with other members of the Tcf/Lef family for binding to β-catenin, or for binding to DNA. We observed that the repressor activity of mouse Tcf3 was only relieved effectively upon simultaneous disruption of both mechanisms. Immunofluorescence of transfected HEK 293 cells showed co-localization of β-catenin and Tcf3 in the nucleus of cells transfected with full-length Tcf3, but not in cells transfected with N-terminal deleted versions. A direct physical interaction between β-catenin and Tcf3 in the nucleus was confirmed by co-immunoprecipitation studies. The inhibitory β-catenin/Tcf3 interface was independent of the ability of Tcf3 to directly interact with DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoppler S, Kavanagh CL (2007) Wnt signalling: variety at the core. J Cell Sci 120:385–393

    Article  PubMed  CAS  Google Scholar 

  2. Arce L, Yokoyama NN, Waterman ML (2006) Diversity of LEF/TCF action in development and disease. Oncogene 25:7492–7504

    Article  PubMed  CAS  Google Scholar 

  3. Yi F, Pereira L, Hoffman JA, Shy BR, Yuen CM, Liu DR, Merrill BJ (2011) Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nat Cell Biol 13:762–770

    Article  PubMed  CAS  Google Scholar 

  4. Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA (2008) Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22:746–755

    Article  PubMed  CAS  Google Scholar 

  5. Pereira L, Yi F, Merrill BJ (2006) Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Mol Cell Biol 26:7479–7491

    Article  PubMed  CAS  Google Scholar 

  6. Yi F, Pereira L, Merrill BJ (2008) Tcf3 functions as a steady-state limiter of transcriptional programs of mouse embryonic stem cell self-renewal. Stem Cells 26:1951–1960

    Article  PubMed  CAS  Google Scholar 

  7. Tam WL, Lim CY, Han J, Zhang J, Ang YS, Ng HH, Yang H, Lim B (2008) T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells 26:2019–2031

    Article  PubMed  CAS  Google Scholar 

  8. Houston DW, Kofron M, Resnik E, Langland R, Destree O, Wylie C, Heasman J (2002) Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3. Development 129:4015–4025

    PubMed  CAS  Google Scholar 

  9. Gradl D, Konig A, Wedlich D (2002) Functional diversity of Xenopus lymphoid enhancer factor/T-cell factor transcription factors relies on combinations of activating and repressing elements. J Biol Chem 277:14159–14171

    Article  PubMed  CAS  Google Scholar 

  10. Kim CH, Oda T, Itoh M, Jiang D, Artinger KB, Chandrasekharappa SC, Driever W, Chitnis AB (2000) Repressor activity of headless/Tcf3 is essential for vertebrate head formation. Nature 407:913–916

    Article  PubMed  CAS  Google Scholar 

  11. Merrill BJ, Gat U, DasGupta R, Fuchs E (2001) Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev 15:1688–1705

    Article  PubMed  CAS  Google Scholar 

  12. Nguyen H, Rendl M, Fuchs E (2006) Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127:171–183

    Article  PubMed  CAS  Google Scholar 

  13. Nguyen H, Merrill BJ, Polak L, Nikolova M, Rendl M, Shaver TM, Pasolli HA, Fuchs E (2009) Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat Genet 41:1068–1075

    Article  PubMed  CAS  Google Scholar 

  14. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    Article  PubMed  CAS  Google Scholar 

  15. van den Bout CJ, Machon O, Rosok O, Backman M, Krauss S (2002) The mouse enhancer element D6 directs Cre recombinase activity in the neocortex and the hippocampus. Mech Dev 110:179–182

    Article  PubMed  Google Scholar 

  16. Maretto S, Cordenonsi M, Dupont S, Braghetta P, Broccoli V, Hassan AB, Volpin D, Bressan GM, Piccolo S (2003) Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci USA 100:3299–3304

    Article  PubMed  CAS  Google Scholar 

  17. Machon O, van den Bout CJ, Backman M, Rosok O, Caubit X, Fromm SH, Geronimo B, Krauss S (2002) Forebrain-specific promoter/enhancer D6 derived from the mouse Dach1 gene controls expression in neural stem cells. Neuroscience 112:951–966

    Article  PubMed  CAS  Google Scholar 

  18. von Kries JP, Winbeck G, Asbrand C, Schwarz-Romond T, Sochnikova N, Dell’Oro A, Behrens J, Birchmeier W (2000) Hot spots in beta-catenin for interactions with LEF-1, conductin and APC. Nat Struct Biol 7:800–807

    Article  Google Scholar 

  19. Graham TA, Weaver C, Mao F, Kimelman D, Xu W (2000) Crystal structure of a beta-catenin/Tcf complex. Cell 103:885–896

    Article  PubMed  CAS  Google Scholar 

  20. Love JJ, Li X, Case DA, Giese K, Grosschedl R, Wright PE (1995) Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376:791–795

    Article  PubMed  CAS  Google Scholar 

  21. Machon O, Backman M, Machonova O, Kozmik Z, Vacik T, Andersen L, Krauss S (2007) A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev Biol 311:223–237

    Article  PubMed  CAS  Google Scholar 

  22. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R (1996) Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 59:3–10

    Article  PubMed  CAS  Google Scholar 

  23. Krieghoff E, Behrens J, Mayr B (2006) Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci 119:1453–1463

    Article  PubMed  CAS  Google Scholar 

  24. Jamieson C, Sharma M, Henderson BR (2011) Regulation of β-catenin nuclear dynamics by GSK-3beta involves a LEF-1 positive feedback loop. Traffic 12:983–999

    Article  PubMed  CAS  Google Scholar 

  25. Merrill BJ, Pasolli HA, Polak L, Rendl M, Garcia–Garcia MJ, Anderson KV, Fuchs E (2004) Tcf3: a transcriptional regulator of axis induction in the early embryo. Development 131:263–274

    Article  PubMed  CAS  Google Scholar 

  26. Miravet S, Piedra J, Miro F, Itarte E, de Garcia HA, Dunach M (2002) The transcriptional factor Tcf-4 contains different binding sites for beta-catenin and plakoglobin. J Biol Chem 277:1884–1891

    Article  PubMed  CAS  Google Scholar 

  27. Moon RT, Kimelman D (1998) From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. Bioessays 20:536–545

    Article  PubMed  CAS  Google Scholar 

  28. Solberg N, Machon O, Krauss S (2008) Effect of canonical Wnt inhibition in the neurogenic cortex, hippocampus, and premigratory dentate gyrus progenitor pool. Dev Dyn 237:1799–1811

    Article  PubMed  CAS  Google Scholar 

  29. Machon O, van den Bout CJ, Backman M, Kemler R, Krauss S (2003) Role of beta-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122:129–143

    Article  PubMed  CAS  Google Scholar 

  30. Lee SM, Tole S, Grove E, McMahon AP (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127:457–467

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by a grant of the Research Council of Norway. Grant no 174938.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Solberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solberg, N., Machon, O., Machonova, O. et al. Mouse Tcf3 represses canonical Wnt signaling by either competing for β-catenin binding or through occupation of DNA-binding sites. Mol Cell Biochem 365, 53–63 (2012). https://doi.org/10.1007/s11010-012-1243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1243-9

Keywords

Navigation