Skip to main content
Log in

The combination of angiotensin II and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bone marrow mesenchymal stem cells (BMMSCs) are ideal seed cells for tissue engineering and regenerative medicine. Many studies have shown that 5-azacytidine (5-aza) can induce BMMSCs to differentiate into cardiomyogenic cells, but some issues still remain to be resolved. In this study, we investigated the effects of angiotensin II (Ang II) on the proliferation and differentiation of BMMSCs induced by 5-aza in vitro. BMMSCs were isolated from the bone marrow of Sprague-Dawley rats by density gradient centrifugation. The third-passage cells were divided into four groups: the Ang II group (0. 1 μmol/l) (group A), the 5-aza group (10 μmol/l) (group B), the Ang II combined with 5-aza group (0.1 and 10 μmol/l) (group C), and the untreated group as control. After 24 h of induction, the medium was changed to the complete culture medium without any inductor, and the cells were cultured for 3 weeks. Morphological changes were observed under a phase contrast microscope. The effect of Ang II and 5-aza on BMMSC proliferation was evaluated by the methyl thiazolyl tetrazolium (MTT) assay. Cardiomyogenic cells were identified through immunofluorescence staining, and the induction ratio was examined by flow cytometry. The level of cardiac troponin I (cTnI) was examined by western blotting, and the ultrastructures of the induced cells were viewed with a transmission electron microscope. The MTT assay showed that the cell proliferation in group C outweighed that in either group A or group B, but no significant difference existed between group A and group B. The expression of specific proteins, namely, cTnI and sarcomeric α-actin in induced BMMSCs was verified as positive. Flow cytometry showed that the induction ratio in group C was higher than that in group A or group B. The protein levels of cTnI in groups A, B, and C were significantly higher than those in the control group. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions. Angiotensin II and 5-azacytidine can promote the proliferation and differentiation of BMMSCs into cardiomyocyte-like cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Sorg RV, Kögler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    Article  PubMed  Google Scholar 

  2. Obradovic S, Rusovic S, Balint B, Ristic-Andelkov A, Romanovic R, Baskot B, Vojvodic D, Gligic B (2004) Autologous bone marrow-derived progenitor cell transplantation for myocardial regeneration after acute infarction. Vojnosanit Pregl 61:519–529

    Article  PubMed  Google Scholar 

  3. Katritsis DG, Sotiropoulou PA, Karvouni E, Karabinos I, Korovesis S, Perez SA, Voridis EM, Papamichail M (2005) Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 65:321–329

    Article  PubMed  Google Scholar 

  4. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12:459–465

    Article  PubMed  CAS  Google Scholar 

  5. Dawn B, Bolli R (2005) Adult bone marrow-derived cells: regenerative potential, plasticity, and tissue commitment. Basic Res Cardiol 100:494–503

    Article  PubMed  CAS  Google Scholar 

  6. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, Zuba-Surma EK, Al-Mallah M, Dawn B (2007) Adult bone marrow derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 67:989–997

    Article  Google Scholar 

  7. Jiang YH, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, JB Du, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  8. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    Article  PubMed  CAS  Google Scholar 

  9. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci USA 99:4397–4402

    Article  PubMed  CAS  Google Scholar 

  10. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652

    Article  PubMed  CAS  Google Scholar 

  11. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  12. Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, Nurzynska D, Kasahara H, Zias E, Bonafe M, Nadal-Ginard B, Torella D, Nascimbene A, Quaini F, Urbanek K, Leri A, Anversa P (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96:127–137

    Article  PubMed  CAS  Google Scholar 

  13. Xu M, Wani M, Dai YS, Wang J, Yan M, Ayub A, Ashraf M (2004) Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes. Circulation 110:2658–2665

    Article  PubMed  Google Scholar 

  14. Kudo M, Wang Y, Wani MA, Xu M, Ayub A, Ashraf M (2003) Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart. J Mol Cell Cardiol 35:1113–1119

    Article  PubMed  CAS  Google Scholar 

  15. Tomita S, Li R-K, Weisel RD, Mickle DAG, Kim E-J, Sakai T, Jia Z-Q (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–II256

    PubMed  CAS  Google Scholar 

  16. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501

    Article  PubMed  CAS  Google Scholar 

  17. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  PubMed  CAS  Google Scholar 

  18. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  19. Yuan Y, Lv A, Chen D, Diao F, Li J, Hu X, Yi F (2006) Ang iotensin II induces cardiomyocytes from human bone marrow-derived mesenchymal stem cells. Chin Heart J 18:258–261

    CAS  Google Scholar 

  20. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    Article  PubMed  CAS  Google Scholar 

  21. Ohishi M, Schipani E (2010) Bone marrow mesenchymal stem cells. J Cell Biochem 109:277–282

    PubMed  CAS  Google Scholar 

  22. Vescovi AL, Reynolds BA, Rietze RL, Bjornson C (2007) Ground-breaking stem-cell work has been reproduced. Nature 447:259

    Article  PubMed  CAS  Google Scholar 

  23. Rasmusson I (2006) Immune modulation by mesenchymal stem cells. Exp Cell Res 31:1815–1822

    Google Scholar 

  24. Bolanos-Meade J, Vogelsang GB (2006) Mesenchymal stem cells and organ transplantation: current status and promising future. Transplantation 81:1388–1389

    Article  PubMed  Google Scholar 

  25. Ringdén O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lönnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, Omazic B, Aschan J, Barkholt L, Le Blanc K (2006) Mesenchymal stem cells for treatment of therapy-resistent graft-versus-host disease. Transplantation 81:1390–1397

    Article  PubMed  Google Scholar 

  26. Wang T, Xu Z, Jiang W, Ma A (2006) Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol 109:74–81

    Article  PubMed  Google Scholar 

  27. Shim WS, Jiang S, Wong P, Tan J, Chua YL, Tan YS, Sin YK, Lim CH, Chua T, Teh M, Liu TC, Sim E (2004) Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cell. Biochem Biophys Res Commun 324:481–488

    Article  PubMed  CAS  Google Scholar 

  28. Siminiak T, Fiszer D, Jerzykowska O, Grygielska B, Kałmucki P, Kurpisz M (2003) Percutaneous autologous myoblast transplantation in the treatment of post-infarction myocardial contractility impairment-report on two cases. Kardiol Pol 59:492–501

    PubMed  Google Scholar 

  29. Siminiak T, Grygielska B, Jerzykowska O, Fiszer D, Kalmucki P, Rzeźniczak J, Kurpisz M (2003) Autologous bone marrow stem cell transplantation in acute myocardial infarction-report on two cases. Kardiol Pol 59:502–510

    PubMed  Google Scholar 

  30. Wang JS, Shunr Tim D, Galipeeall J, Chedrawy E, Eliopoulos N, Chiu RC (2000) Marrow Stromal cells for cellular Cardiomyoplasty: feasibility and potential clinical advantages. Thorac Cardiovasc Surg 120:999–1005

    Article  CAS  Google Scholar 

  31. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    Article  PubMed  CAS  Google Scholar 

  32. Williams B (2001) Angiotensin II and the pathophysiology of cardiovascular remodeling. Am J Cardiol 87:10C–17C

    Article  PubMed  CAS  Google Scholar 

  33. Yamada T, Kondo T, Numaguchi Y, Tsuzuki M, Matsubara T, Manabe I, Sata M, Nagai R, Murohara T (2007) Angiotensin II receptor blocker inhibits neointimal hyperplasia through regulation of smooth muscle-like progenitor cells. Arterioscler Thromb Vasc Biol 27:2363–2369

    Article  PubMed  CAS  Google Scholar 

  34. Ohtani K, Egashira K, Ihara Y, Nakano K, Funakoshi K, Zhao G, Sata M, Sunagawa K (2006) Angiotensin II type 1 receptor blockade attenuates in-stent restenosis by inhibiting inflammation and progenitor cells. Hypertension 48:664–670

    Article  PubMed  CAS  Google Scholar 

  35. Yurovsky VV, Gerzanich V, Ivanova S, Dong Y, Tsymbalyuk O, Simard JM (2007) Autocrine TGF-β1 mediates angiotensin II-induced proliferative response of cerebral vessels in vivo. Am J Hypertens 20:950–956

    Article  PubMed  CAS  Google Scholar 

  36. Campbell SE, Katwa LC (1997) Angiotensin II stimulated expression of transforming growth factor-β1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958

    Article  PubMed  CAS  Google Scholar 

  37. Stouffer GA, Owens GK (1992) Angiotensin II-induced mitogenesis of spontaneously hypertensive rat-derived cultured smooth muscle cells is dependent on autocrine production of transforming growth factor-β. Circ Res 70:820–828

    PubMed  CAS  Google Scholar 

  38. Gibbons GH, Pratt RE, Dzau VJ (1992) Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-β1 expression determines growth response to angiotensin II. J Clin Invest 90:456–461

    Article  PubMed  CAS  Google Scholar 

  39. Kim YM, Jeon ES, Kim MR, Jho SK, Ryu SW, Kim JH (2008) Angiotensin II-induced differentiation of adipose tissue-derived mesenchymal stem cells to smooth muscle-like cells. Int J Biochem Cell Biol 40:2482–2491

    Article  PubMed  CAS  Google Scholar 

  40. Raimondo S, Penna C, Pagliaro P, Geuna S (2006) Morphological characterization of GFP stably transfected adult mesenchymal bone marrow stem cells. J Anat 208:3–12

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the New Technique of Xijing Hospital. We acknowledge Xiaofeng Huang for his excellent assistance in electron microscopy.

Conflicts of interest

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AnLin Lv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Y., Lv, A., Wang, L. et al. The combination of angiotensin II and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem 360, 279–287 (2012). https://doi.org/10.1007/s11010-011-1067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1067-z

Keywords

Navigation