Skip to main content

Advertisement

Log in

Efficient secretion of biologically active Chondroitinase ABC from mammalian cells in the absence of an N-terminal signal peptide

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Proteoglycans carrying chondroitin sulfate side chains have been shown to fulfill important biological functions in development, disease, and signaling. One area of considerable interest is the functional importance of chondroitin sulfates as inhibitors of the regeneration of axonal projections in the mammalian central nervous system. In animal models of spinal cord injury, injections of the enzyme Chondroitinase ABC from the bacterium Proteus vulgaris into the lesion site leads to degradation of chondroitin sulfates, and promotes axonal regeneration and significant functional recovery. Here, a mammalian expression system of an epitope-tagged Chondroitinase ABC protein is described. It is demonstrated that the addition of a eukaryotic secretion signal sequence to the N-terminus of the bacterial Chondroitinase ABC sequence allowed secretion, but interfered with function of the secreted enzyme. In contrast, expression of the Chondroitinase ABC gene without N-terminal eukaryotic secretion sequence or bacterial hydrophobic leader sequence led to efficient secretion of a biologically active Chondroitinase ABC protein from both immortalized and primary cells. Moreover, the C-terminal epitope tag could be utilized to follow expression of this protein. This novel Chondroitinase ABC gene is a valuable tool for a better understanding of the in vivo roles of chondroitin sulfates in mammalian development and disease, as well as in gene therapy approaches, including the treatment of spinal chord injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Habuchi O (2000) Diversity and functions of glycosaminoglycan sulfotransferases. Biochim Biophys Acta 1474(2):115–127

    PubMed  CAS  Google Scholar 

  2. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72(6):455–482

    Article  PubMed  CAS  Google Scholar 

  3. Lauder RM (2009) Chondroitin sulphate: a complex molecule with potential impacts on a wide range of biological systems. Complement Ther Med 17(1):56–62

    Article  PubMed  Google Scholar 

  4. Schaefer L, Schaefer RM (2010) Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 339(1):237–246

    Article  PubMed  CAS  Google Scholar 

  5. Selleck SB (2000) Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 16(5):206–212

    Article  PubMed  CAS  Google Scholar 

  6. Mythreye K, Blobe GC (2009) Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Signal 21(11):1548–1558

    Article  PubMed  CAS  Google Scholar 

  7. Nikitovic D, Assouti M, Sifaki M, Katonis P, Krasagakis K, Karamanos NK, Tzanakakis GN (2008) Chondroitin sulfate and heparan sulfate-containing proteoglycans are both partners and targets of basic fibroblast growth factor-mediated proliferation in human metastatic melanoma cell lines. Int J Biochem Cell Biol 40(1):72–83

    Article  PubMed  CAS  Google Scholar 

  8. Asimakopoulou AP, Theocharis AD, Tzanakakis GN, Karamanos NK (2008) The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo 22(3):385–389

    PubMed  CAS  Google Scholar 

  9. Klüppel M, Wight TN, Chan C, Hinek A, Wrana JL (2005) Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis. Development 132(17):3989–4003

    Article  PubMed  Google Scholar 

  10. Wegrowski Y, Maquart FX (2006) Chondroitin sulfate proteoglycans in tumor progression. Adv Pharmacol 53:297–321

    Article  PubMed  CAS  Google Scholar 

  11. Yamada S, Sugahara K (2008) Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr Drug Discov Technol 5(4):289–301

    Article  PubMed  CAS  Google Scholar 

  12. Zou K, Muramatsu H, Ikematsu S, Sakuma S, Salama RH, Shinomura T, Kimata K, Muramatsu T (2000) A heparin-binding growth factor, midkine, binds to a chondroitin sulfate proteoglycan, PG-M/versican. Eur J Biochem 267(13):4046–4053

    Article  PubMed  CAS  Google Scholar 

  13. Zou P, Zou K, Muramatsu H, Ichihara-Tanaka K, Habuchi O, Ohtake S, Ikematsu S, Sakuma S, Muramatsu T (2003) Glycosaminoglycan structures required for strong binding to midkine, a heparin-binding growth factor. Glycobiology 13(1):35–42

    Article  PubMed  CAS  Google Scholar 

  14. Fawcett J (2009) Molecular control of brain plasticity and repair. Prog Brain Res 175:501–509

    Article  PubMed  CAS  Google Scholar 

  15. Sherman LS, Back SA (2008) A ‘GAG’ reflex prevents repair of the damaged CNS. Trends Neurosci 31(1):44–52

    Article  PubMed  CAS  Google Scholar 

  16. Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54(1):1–18

    Article  PubMed  CAS  Google Scholar 

  17. Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17(1):120–127

    Article  PubMed  CAS  Google Scholar 

  18. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301

    Article  PubMed  CAS  Google Scholar 

  19. Bradbury EJ, Carter LM (2010) Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull. doi:10.1016/j.brainresbull.2010.06.015

  20. Houle JD, Amin A, Cote MP, Lemay M, Miller K, Sandrow H, Santi L, Shumsky J, Tom V (2009) Combining peripheral nerve grafting and matrix modulation to repair the injured rat spinal cord. J Vis Exp (33)

  21. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640

    Article  PubMed  CAS  Google Scholar 

  22. Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM (2007) Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci 27(9):2176–2185

    Article  PubMed  CAS  Google Scholar 

  23. Cafferty WB, Bradbury EJ, Lidierth M, Jones M, Duffy PJ, Pezet S, McMahon SB (2008) Chondroitinase ABC-mediated plasticity of spinal sensory function. J Neurosci 28(46):11998–12009

    Article  PubMed  CAS  Google Scholar 

  24. Filous AR, Miller JH, Coulson-Thomas YM, Horn KP, Alilain WJ, Silver J (2010) Immature astrocytes promote CNS axonal regeneration when combined with chondroitinase ABC. Dev Neurobiol 70(12):826–841

    Article  PubMed  Google Scholar 

  25. Lee H, McKeon RJ, Bellamkonda RV (2010) Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci USA 107(8):3340–3345

    Article  PubMed  CAS  Google Scholar 

  26. Tom VJ, Houle JD (2008) Intraspinal microinjection of chondroitinase ABC following injury promotes axonal regeneration out of a peripheral nerve graft bridge. Exp Neurol 211(1):315–319

    Article  PubMed  CAS  Google Scholar 

  27. Yick LW, Wu W, So KF, Yip HK, Shum DK (2000) Chondroitinase ABC promotes axonal regeneration of Clarke’s neurons after spinal cord injury. Neuroreport 11(5):1063–1067

    Article  PubMed  CAS  Google Scholar 

  28. Carter LM, Starkey ML, Akrimi SF, Davies M, McMahon SB, Bradbury EJ (2008) The yellow fluorescent protein (YFP-H) mouse reveals neuroprotection as a novel mechanism underlying chondroitinase ABC-mediated repair after spinal cord injury. J Neurosci 28(52):14107–14120

    Article  PubMed  CAS  Google Scholar 

  29. Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10(2):148–155

    Article  PubMed  CAS  Google Scholar 

  30. Huang W, Lunin VV, Li Y, Suzuki S, Sugiura N, Miyazono H, Cygler M (2003) Crystal structure of Proteus vulgaris chondroitin sulfate ABC lyase I at 1.9 Å resolution. J Mol Biol 328(3):623–634

    Article  PubMed  CAS  Google Scholar 

  31. Prabhakar V, Capila I, Bosques CJ, Pojasek K, Sasisekharan R (2005) Chondroitinase ABC I from Proteus vulgaris: cloning, recombinant expression and active site identification. Biochem J 386(Pt 1):103–112

    PubMed  CAS  Google Scholar 

  32. Sato N, Shimada M, Nakajima H, Oda H, Kimura S (1994) Cloning and expression in Escherichia coli of the gene encoding the Proteus vulgaris chondroitin ABC lyase. Appl Microbiol Biotechnol 41(1):39–46

    Article  PubMed  CAS  Google Scholar 

  33. Tan NS, Ho B, Ding JL (2002) Engineering a novel secretion signal for cross-host recombinant protein expression. Protein Eng 15(4):337–345

    Article  PubMed  CAS  Google Scholar 

  34. Tester NJ, Plaas AH, Howland DR (2007) Effect of body temperature on chondroitinase ABC’s ability to cleave chondroitin sulfate glycosaminoglycans. J Neurosci Res 85(5):1110–1118

    Article  PubMed  CAS  Google Scholar 

  35. Curinga GM, Snow DM, Mashburn C, Kohler K, Thobaben R, Caggiano AO, Smith GM (2007) Mammalian-produced chondroitinase AC mitigates axon inhibition by chondroitin sulfate proteoglycans. J Neurochem 102(1):275–288

    Article  PubMed  CAS  Google Scholar 

  36. Coulson-Thomas YM, Coulson-Thomas VJ, Filippo TR, Mortara RA, da Silveira RB, Nader HB, Porcionatto MA (2008) Adult bone marrow-derived mononuclear cells expressing chondroitinase AC transplanted into CNS injury sites promote local brain chondroitin sulphate degradation. J Neurosci Methods 171(1):19–29

    Article  PubMed  CAS  Google Scholar 

  37. Muir EM, Fyfe I, Gardiner S, Li L, Warren P, Fawcett JW, Keynes RJ, Rogers JH (2010) Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells. J Biotechnol 145(2):103–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge the financial support from Children’s Memorial Research Center, Chicago, IL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Klüppel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klüppel, M. Efficient secretion of biologically active Chondroitinase ABC from mammalian cells in the absence of an N-terminal signal peptide. Mol Cell Biochem 351, 1–11 (2011). https://doi.org/10.1007/s11010-010-0705-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0705-1

Keywords

Navigation