Skip to main content

Advertisement

Log in

Proteome analysis of human pancreatic cancer cell lines with highly liver metastatic potential by antibody microarray

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Antibody microarrays have been successfully used to determine relative abundance of key proteins in various cancers and other diseases. We have previously showed liver metastatic-related genes between the metastatic pancreatic cancer line (SW1990HM) and its parental line (SW1990). In this study, we searched for potential markers for metastatic progression using antibody microarrays. The SpringBio Antibody Microarrays were used to analysis the different proteomes between SW1990HM and SW1990 cells. A standard ≥2.0-fold cutoff value was used to determine differentially expressed proteins and Western blotting analysis further confirmed the results. Antibody microarrays revealed that 40 proteins were reproducibly altered more than 2-fold between the selected variant and its parental counterpart; 14 of the proteins were up-regulated, and 26 were down-regulated. Most of the up-regulated proteins (7/14) play a role in tumor signal transduction, while a number of down-regulated proteins (10/26) function in cell differentiation; this might be crucial for pancreatic cancer metastasis. Four dysregulated proteins were validated by western blotting in the cell lines. Interestingly, the up-regulation of Glucagon and down-regulation of Prolactin were further confirmed in the culture supernatants by western blotting. These proteomic data are valuable for understanding pancreatic cancer metastasis and searching for potential markers of metastatic progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ru C, Sheng P, Teresa A, Ruedi A, Brentnall (2005) Proteomic profiling of pancreatic cancer for biomarker discovery. Mol Cell Proteomics 4:523–533

    Article  Google Scholar 

  2. Ingvarsson J, Wingren C, Carlsson A, Ellmark P, Wahren B, Engström G, Harmenberg U, Krogh M, Peterson C, Borrebaeck CK (2008) Detection of pancreatic cancer using antibody microarray-based serum protein profiling. Proteomics 8:2211–2219

    Article  CAS  PubMed  Google Scholar 

  3. Orchekowski R, Hamelinck D, Li L, Gliwa E, Van Brocklin M, Marrero JA, Vande Woude GF, Feng ZD, Brand R, Brand BB (2005) Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Res 65:193–202

    Article  Google Scholar 

  4. Vimalachandran D, Costello E (2004) Proteomic technologies and their application to pancreatic cancer. Expert Rev Proteomics 4:493–501

    Article  Google Scholar 

  5. Shekouh AR, Thompson CC, Prime W, Campbell F, Hamlett J, Herrington CS, Lemoine NR, Crnogorac-Jurcevic T, Buechler MW, Friess H, Neoptolemos JP, Pennington SR, Costello E (2003) Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics 3:1988–2001

    Article  CAS  PubMed  Google Scholar 

  6. Shen JJ, Person MD, Zhu JJ, Abbruzzese JL, Li DH (2004) Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res 64:9018–9026

    Article  CAS  PubMed  Google Scholar 

  7. Shi WD, Meng ZQ, Chen Z, Lin JH, Zhou ZH, Liu LM (2009) Identification of liver metastasis-related genes in a novel human pancreatic carcinoma cell model by microarray analysis. Cancer Lett 283:84–91

    Article  CAS  PubMed  Google Scholar 

  8. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    CAS  PubMed  Google Scholar 

  9. Ahram M, Best CJ, Flaig MJ, Gillespie JW, Leiva IM, Chuaqui RF, Zhou G, Shu H, Duray PH, Linehan WM, Raffeld M, Ornstein DK, Zhao Y, Petricoin EF III, Emmert-Buck MR (2002) Proteomic analysis of human prostate cancer. Mol Carcinog 33:9–15

    Article  CAS  PubMed  Google Scholar 

  10. Everley PA, Krijgsveld J, Zetter BR, Gygi SP (2004) Quantitative cancer proteomics, stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol Cell Proteomics 3:729–735

    Article  CAS  PubMed  Google Scholar 

  11. Haab BB (2005) Antibody arrays in cancer research. Mol Cell Proteomics 4:377–383

    Article  CAS  PubMed  Google Scholar 

  12. Ghobrial IM, McCormick DJ, Kaufmann SH, Leontovich AA, Loegering DA, Dai NT, Krajnik KL, Stenson MJ, Melhem MF, Novak AJ, Ansell SM, Witzig TE (2005) Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood 105:3722–3730

    Article  CAS  PubMed  Google Scholar 

  13. Poschmann G, Sitek B, Sipos B, Hamacher M, Vonend O, Meyer HE, Stühler K (2009) Cell-based proteome analysis: the first stage in the pipeline for biomarker discovery. Biochim Biophys Acta 1794:1309–1316

    CAS  PubMed  Google Scholar 

  14. Chen N, Sun W, Deng XY, Hao YW, Chen XL, Xing BC, Jia W, Ma J, Wei HD, Zhu YP, Qian XH, Jiang Y, He FC (2008) Quantitative proteome analysis of HCC cell lines with different metastatic potentials by SILAC. Proteomics 8:5108–5118

    Article  CAS  PubMed  Google Scholar 

  15. Hou YF, Yuan ST, Li HC, Wu J, Lu JS, Liu G, Lu LJ, Shen ZZ, Ding J, Shao ZM (2004) ERbeta exerts multiple stimulative effects on human breast carcinoma cells. Oncogene 23:5799–5806

    Article  CAS  PubMed  Google Scholar 

  16. Ding SJ, Li Y, Tan YX, Jiang MR, Tian B, Liu YK, Shao XX, Ye SL, Wu JR, Zeng R, Wang HY, Tang ZY, Xia QX (2004) From proteomic analysis to clinical significance. Mol Cell Proteomics 3:73–81

    CAS  PubMed  Google Scholar 

  17. Missiaglia E, Blaveri E, Terris B, Wang YH, Costello EC, Neoptolemos JP, Crnogorac-Jurcevic T, Lemoine NR (2004) Analysis of gene expression in cancer cell lines identifies candidate markers for pancreatic tumorigenesis and metastasis. Int J Cancer 112:100–112

    Article  CAS  PubMed  Google Scholar 

  18. Sakaguchi T, Suzuki S, Higashi H, Inaba K, Nakamura S, Baba S, Kato T, Konno H (2008) Expression of tight junction protein Claudin-5 in tumor vessels and sinusoidal endothelium in patients with hepatocellular carcinoma. J Surg Res 147:123–131

    Article  CAS  PubMed  Google Scholar 

  19. Madoz-Gurpide J, Canamero M, Jose Solano LS, Alfonso P, Ignacio Casal J (2007) A proteomics analysis of cell signaling alterations in colorectal cancer. Mol Cell Proteomics 6:2150–2164

    Article  CAS  PubMed  Google Scholar 

  20. Jessen JR (2009) Noncanonical Wnt signaling in tumor progression and metastasis. Zebrafish 6:21–28

    Article  CAS  PubMed  Google Scholar 

  21. Lai SL, Chien AJ, Moon RT (2009) Wnt/Fz signaling, the cytoskeleton potential roles in tumorigenesis. Cell Res 19:532–545

    Article  CAS  PubMed  Google Scholar 

  22. Thaker PH, Yokoi K, Jennings NB, Li Y, Rebhun RB Jr, Rousseau DL, Fan D, Sood AK (2005) Inhibition of experimental colon cancer metastasis by the GABA-receptor agonist Nembutal. Cancer Biol Ther 4:753–758

    Article  CAS  PubMed  Google Scholar 

  23. Couvelard A, Hu JT, Steers G, Otoole D, Sauvanet A, Belghiti J, Bedossa P, Gatter K, Ruszniewski P, Pezzella F (2006) Identification of potential therapeutic targets by gene-expression profiling in pancreatic endocrine tumors. Gastroenterology 131:1597–1610

    Article  CAS  PubMed  Google Scholar 

  24. Chen GP, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D, Rabbani SA (2004) Up-regulation of Wnt-1 and β-Catenin production in patients with advanced metastatic prostate carcinoma. Cancer 15:1345–1356

    Article  Google Scholar 

  25. Palumbo JS, Barney KA, Blevins EA, Shaw MA, Mishra A, Flick MJ, Kombrinck KW, Talmage KE, Souri M, Ichinose A, Degen JL (2008) Factor XIII transglutaminase supports hematogenous tumor cell metastasis through a mechanism dependent on natural killer cell function. J Thromb Haemost 6:812–819

    Article  CAS  PubMed  Google Scholar 

  26. Macikova I, Perzelova A, Mraz P, Steno J, Bizik I (2001) Establishment, morphological, growth and cytoskeletal properties of 135-BCA carcinoma cell line derived from lung brain metastasis. Neoplasma 6:479–482

    Google Scholar 

  27. Kryczek I, Wei S, Szeliga W, Vatan LH, Zou WP (2009) Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 114:357–359

    Article  CAS  PubMed  Google Scholar 

  28. Varghese S, Burness M, Xu H, Beresnev T, Pingpank J, Alexander HR (2007) Site-specific gene expression profiles and novel molecular prognostic factors in patients with lower gastrointestinal adenocarcinoma diffusely metastatic to liver or peritoneum. Ann Surg Oncol 14:3460–3471

    Article  PubMed  Google Scholar 

  29. Mocellin S, Marincola F, Rossi CR, Nitti D, Lise M (2004) The multifaceted relationship between IL-10 and adaptative immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev 15:61–76

    Article  CAS  PubMed  Google Scholar 

  30. Shinji S, Naito Z, Ishiwata T, Anaka TN, Furukawa K, Suzuki H, Seya T, Kan H, Tsuruta H, Matsumoto S, Matsuda A, Teranishi N, Ohaki Y, Tajiri T (2006) Neuroendocrine cell differentiation of poorly differentiated colorectal adenocarcinoma correlates with liver metastasis. Int J Oncol 29:357–364

    CAS  PubMed  Google Scholar 

  31. Morimoto Y, Kurokawa H, Tanaka T, Yamashita Y, Kito S, Okabe S, Takahashi T, Ohba T (2006) Correlation between the incidence of central nodal necrosis in cervical lymph node metastasis and the extent of differentiation in oral squamous cell carcinoma. Dentomaxillofacial Radiol 35:18–23

    Article  CAS  Google Scholar 

  32. Kolb A, Rieder S, Born D, Giese NA, Giese T, Rudofsky G, Werner J, Buchler MW, Friess H, Esposito I, Kleeff J (2009) Glucagon/insulin ratio as a potential biomarker for pancreatic cancer in patients with new-onset diabetes mellitus. Cancer Biol Ther 13:8–16

    Google Scholar 

  33. Lissoni P, Bignami A, Frontini L, Manganini V, Dapretto E, Gardani GS, Vigano P, Strada G (2005) Possible involvement of prolactin in endocrine-resistant metastatic prostate cancer. Int J Biol Markers 20:123–125

    CAS  PubMed  Google Scholar 

  34. Dagvadorj A, Collins S, Jomain JB, Abdulghani J, Karras J, Zellweger T, Li H, Nurmi M, Alanen K, Mirtti T, Visakorpi T, Bubendorf L, Goffin V, Nevalainen MT (2007) Autocrine prolactin promotes prostate cancer cell growth via Janus kinase-2-signal transducer and activator of transcription-5a/b signaling pathway. Endocrinology 148:3089–3101

    Article  CAS  PubMed  Google Scholar 

  35. Gronborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N, Molina H, Jensen ON, Hruban RH, Goggins MG, Maitra A, Pandey A (2006) Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics 5:157–171

    CAS  PubMed  Google Scholar 

  36. Kenneth HY, Anil KR, Ian AB (2005) Characterization of proteins in human pancreatic cancer serum using differential gel electrophoresis and tandem mass spectrometry. J Proteome Res 4:1742–1751

    Article  Google Scholar 

  37. Sun ZL, Zhu Y, Wang FQ, Chen R, Peng T, Fan ZN, Xu ZK, Miao Y (2007) Serum proteomic-based analysis of pancreatic carcinoma for the identification of potential cancer biomarkers. Biochim Biophys Acta 1774:764–771

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Ministry of Science and Technology, P.R. China 2005DFA30130, The “Climbing Up” Project of the Shanghai Municipal Commission for Science and Technology, No. 064307053, and the Shanghai Health Bureau No. 2006YSB008, Shanghai, P. R. China. These funding sources had no influence on the decision to submit this manuscript for publication or the writing of the report.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W., Meng, Z., Chen, Z. et al. Proteome analysis of human pancreatic cancer cell lines with highly liver metastatic potential by antibody microarray. Mol Cell Biochem 347, 117–125 (2011). https://doi.org/10.1007/s11010-010-0619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0619-y

Keywords

Navigation