Skip to main content

Advertisement

Log in

Overexpression of PPARγ can down-regulate Skp2 expression in MDA-MB-231 breast tumor cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Skp2 is frequent amplified and overexpressed in breast cancer, making it a potential molecular target for cancer therapy. The objective of this study was to examine the effect of PPARγ overexpression on Skp2 expression in breast cancer cell lines. First, we investigated the role of PPARγ and Skp2 in human breast cancer progression. Immunohistochemical analysis of 70 specimens on formalin-fixed paraffin sections was performed. Furthermore in vitro, Western blot analysis was used to study the relationship between PPARγ and Skp2. We found that the expression of PPARγ and Skp2 expression was inverse correlation whether in vivo or in vitro. In addition, PPARγ overexpression can down-regulate the expression of Skp2 mRNA and protein in breast cancer cells. PPARγ overexpression decreased breast cancer cell proliferation and induced spontaneous apoptosis even in the absence of exogenous ligand. These PPARγ-overexpressing cells were dramatically more sensitive to PPARγ ligand-induced apoptosis compared with parental or Myc-control transfected cells. Overexpressing of Skp2 partially reversed PPARγ’s pro-apoptotic and anti-proliferative abilities. These results suggested that PPARγ’s pro-apoptotic and anti-proliferative abilities appear to be triggered at least in part by the modulation of Skp2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Skp2:

S-phase kinase-associated protein 2

PPARγ:

Peroxisome proliferator-activated receptor γ

Tro:

Troglitazone

References

  1. Hortobagyi GN (1998) Treatment of breast cancer. N Engl J Med 339:974–984

    Article  CAS  PubMed  Google Scholar 

  2. Baselga J, Norton L (2002) Focus on breast cancer. Cancer Cell 1:319–322

    Article  CAS  PubMed  Google Scholar 

  3. Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  CAS  PubMed  Google Scholar 

  4. Kliewer SA, Forman BM, Blumberg B et al (1994) Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 91:7355–7359

    Article  CAS  PubMed  Google Scholar 

  5. Schoonjans K, Staels B, Auwerx J (1996) The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302:93–109

    CAS  PubMed  Google Scholar 

  6. Willson TM, Brown PJ, Sternbach DD et al (2000) The PPARs: from orphan receptors to drug discovery. J Med Chem 43:527–550

    Article  CAS  PubMed  Google Scholar 

  7. Tontonoz P, Graves RA, Budavari AI et al (1994) Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res 22:5628–5634

    Article  CAS  PubMed  Google Scholar 

  8. Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123:993–999

    Article  CAS  PubMed  Google Scholar 

  9. Yu HN, Lee YR, Noh EM et al (2008) Induction of G1 phase arrest and apoptosis in MDA-MB-231 breast cancer cells by troglitazone, a synthetic peroxisome proliferator-activated receptor gamma (PPARgamma) ligand. Cell Biol Int 32:906–912

    Article  CAS  PubMed  Google Scholar 

  10. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6:369–381

    Article  CAS  PubMed  Google Scholar 

  11. Gstaiger M, Jordan R, Lim M (2001) Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA 98:5043–5048

    Article  CAS  PubMed  Google Scholar 

  12. Signoretti S, Di Marcotullio L, Richardson A et al (2002) Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Investig 110:633–641

    CAS  PubMed  Google Scholar 

  13. Koga H, Harada M, Ohtsubo M et al (2003) Troglitazone induces p27Kip1-associated cell-cycle arrest through down-regulating Skp2 in human hepatoma cells. Hepatology 37:1086–1096

    Article  CAS  PubMed  Google Scholar 

  14. Allred DC, Harvey JM, Berardo M et al (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

    CAS  PubMed  Google Scholar 

  15. Davidovich S, Ben-Izhak O, Shapira M et al (2008) Over-expression of Skp2 is associated with resistance to preoperative doxorubicin-based chemotherapy in primary breast cancer. Breast Cancer Res 10:R63

    Article  PubMed  Google Scholar 

  16. Ravaioli A, Monti F, Regan MM et al (2008) p27 and Skp2 immunoreactivity and its clinical significance with endocrine and chemo-endocrine treatments in node-negative early breast cancer. Ann Oncol 19:660–668

    Article  CAS  PubMed  Google Scholar 

  17. Jiang Y, Zou L, Zhang C et al (2009) PPARgamma and Wnt/beta-Catenin pathway in human breast cancer: expression pattern, molecular interaction and clinical/prognostic correlations. J Cancer Res Clin Oncol 135:1551–1559

    Article  CAS  PubMed  Google Scholar 

  18. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    CAS  PubMed  Google Scholar 

  19. Qin C, Morrow D, Stewart J et al (2004) A new class of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists that inhibit growth of breast cancer cells: 1,1-Bis(3′-indolyl)-1-(p-substituted phenyl)methanes. Mol Cancer Ther 3:247–260

    CAS  PubMed  Google Scholar 

  20. Koutnikova H, Auwerx J (2002) PPARgamma, an X-ceptor for Xs. Ann N Y Acad Sci 967:28–33

    Article  CAS  PubMed  Google Scholar 

  21. Lehmann JM, Moore LB, Smith-Oliver TA et al (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953–12956

    Article  CAS  PubMed  Google Scholar 

  22. Mueller E, Sarraf P, Tontonoz P et al (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1:465–470

    Article  CAS  PubMed  Google Scholar 

  23. Morrison RF, Farmer SR (1999) Role of PPARgamma in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis. J Biol Chem 274:17088–17097

    Article  CAS  PubMed  Google Scholar 

  24. Altiok S, Xu M, Spiegelman BM (1997) PPARgamma induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev 11:1987–1998

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Bates TM, Bernstein SH, Phipps RP (2008) Peroxisome proliferator-activated receptor gamma overexpression suppresses growth and induces apoptosis in human multiple myeloma cells. Clin Cancer Res 14:6414–6425

    Article  CAS  PubMed  Google Scholar 

  26. Masuda TA, Inoue H, Sonoda H et al (2002) Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res 62:3819–3825

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from National Natural Science Foundation of China (No. 30300099, No. 30770488, and No. 30870320); Natural Science Foundation of Jiangsu province (No. BK2009156, No. BK2009157, No. BK2009161); Health Department of Jiangsu Province (H200760) and Key Subject of Jiangsu Province (xk20070320).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Lu or Huimin Wang.

Additional information

Jie Meng and Yun Ding contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2010_570_MOESM1_ESM.tif

Information about the specificities of antibodies (×400). Immunostaining was performed using the PPARγ antibodies (a) or Skp2 antibodies (c) but not the secondary antibodies. On the other hand, Immunostaining was performed using normal rabbit IgG and the secondary antibodies (b, d). (TIFF 5709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, J., Ding, Y., Shen, A. et al. Overexpression of PPARγ can down-regulate Skp2 expression in MDA-MB-231 breast tumor cells. Mol Cell Biochem 345, 171–180 (2010). https://doi.org/10.1007/s11010-010-0570-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0570-y

Keywords

Navigation