Skip to main content
Log in

High fat diet induces ceramide and sphingomyelin formation in rat’s liver nuclei

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Obesity increases the risk for hepatic steatosis. Recent studies have demonstrated that high fat diet (HFD) may affect sphingolipid formation in skeletal muscles, heart, and other tissues. In this work we sought to investigate whether HFD feeding provokes changes in content and fatty acids (FAs) composition of sphingomyelin and ceramide at the level of liver and hepatic nuclei. Furthermore, we investigated whether the ceramide formation is related to the activity of either neutral sphingomyelinase (N-SMase) or acidic sphingomyelinase (A-SMase). Three weeks of HFD provision induced pronounced ceramide and sphingomyelin accumulation in both liver and hepatic nuclei, accompanied by increased activity of N-SMase but not A-SMase. Furthermore, a shift toward greater FAs saturation status in these sphingolipids was also observed. These findings support the conclusion that HFD has a major impact on sphingolipid metabolism not only in the liver, but also in hepatic nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Jayadev S, Liu B, Bielawska AE, Lee JY, Nazaire F, Pushkareva MYu, Obeid LM, Hannun YA (1995) Role for ceramide in cell cycle arrest. J Biol Chem 270(5):2047–2052

    Article  CAS  PubMed  Google Scholar 

  2. Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269(5):3125–3128

    CAS  PubMed  Google Scholar 

  3. Neitcheva T, Peeva D (1995) Phospholipid composition, phospholipase A2 and sphingomyelinase activities in rat liver nuclear membrane and matrix. Int J Biochem Cell Biol 27:995–1001

    Article  CAS  PubMed  Google Scholar 

  4. James JL, Clawson GA, Chan CH, Smuckler EA (1981) Analysis of the phospholipid of the nuclear envelope and endoplasmic reticulum of liver cells by high pressure liquid chromatography. Lipids 16:541–545

    Article  CAS  PubMed  Google Scholar 

  5. Albi E, Lazzarini R, Viola Magni M (2008) Phosphatidylcholine/sphingomyelin metabolism crosstalk inside the nucleus. Biochem J 410(2):381–389

    Article  CAS  PubMed  Google Scholar 

  6. Rossi G, Viola Magni M, Albi E (2007) Signal transducer and activator of transcription 3 and sphingomyelin metabolism in intranuclear complex during cell proliferation. Arch Biochem Biophys 464:138–143

    Article  CAS  PubMed  Google Scholar 

  7. Albi E, Viola Magni MP (1997) Chromatin neutral sphingomyelinase and its role in hepatic regeneration. Biochem Biophys Res Commun 236:29–33

    Article  CAS  PubMed  Google Scholar 

  8. Albi E, Peloso I, Viola Magni MP (1999) Nuclear membrane sphingomyelin-cholesterol changes in rat liver after hepatectomy. Biochem Biophys Res Commun 262:692–695

    Article  CAS  PubMed  Google Scholar 

  9. Schutze S, Pottho K, Machleidt T, Berkovic D, Wiegmann K, Kronke M (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71:765–776

    Article  CAS  PubMed  Google Scholar 

  10. Alewijnse AE, Peters SL (2008) Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol 585(2–3):292–302

    Article  CAS  PubMed  Google Scholar 

  11. Straczkowski M, Kowalska I, Nikolajuk A, Dzienis-Straczkowska S, Kinalska I, Baranowski M, Zendzian-Piotrowska M, Brzezinska Z, Gorski J (2004) Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes 53(5):1215–1221

    Article  CAS  PubMed  Google Scholar 

  12. Smith AC, Mullen KL, Junkin KA, Nickerson J, Chabowski A, Bonen A, Dyck DJ (2007) Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia. Am J Physiol Endocrinol Metab 293:E172–E181

    Article  CAS  PubMed  Google Scholar 

  13. Baranowski M, Zabielski P, Blachnio A, Gorski J (2008) Effect of exercise duration on ceramide metabolism in the rat heart. Acta Physiol 192(4):519–529

    Article  CAS  Google Scholar 

  14. Samad F, Hester KD, Yang G, Hannun YA, Bielawski J (2006) Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 55(9):2579–2587

    Article  CAS  PubMed  Google Scholar 

  15. Oosterveer MH, van Dijk TH, Tietge UJ, Boer T, Havinga R, Stellaard F, Groen AK, Kuipers F, Reijngoud DJ (2009) High fat feeding induces hepatic fatty acid elongation in mice. PLoS One 4(6):e6066

    Article  PubMed  Google Scholar 

  16. Wierzbicki M, Chabowski A, Żendzian-Piotrowska M, Harasim E, Górski J (2009) Chronic, in vivo, PPARα activation prevents lipid overload in rat liver induced by high fat feeding. Adv Med Sci 54(1):59–65

    Article  CAS  PubMed  Google Scholar 

  17. Bucki R, Żendzian-Piotrowska M, Nawrocki A, Górski J (1997) Effect of increased uptake of plasma fatty acids by the liver on lipid metabolism in the hepatocellular nuclei. Prostaglandins Leukot Essent Fatty Acids 57(1):27–31

    Article  CAS  PubMed  Google Scholar 

  18. Górski J, Elsing C, Bucki R, Żendzian-Piotrowska M, Stremmel W (1996) The plasma borne free fatty acids rapidly enter the hepatocellular nuclei. Life Sci 59:2209–2215

    Article  PubMed  Google Scholar 

  19. Lamar C, Munger WL, Pitot HC (1967) Studies on a 32s component of nuclear RNA. Arch Biochem Biophys 119:98–104

    Article  CAS  PubMed  Google Scholar 

  20. Bosser R, Aligué R, Guerini D, Agell N, Carafoli E, Bachs OJ (1993) Calmodulin can modulate protein phosphorylation in rat liver cells nuclei. J Biol Chem 268(21):15477–15483

    CAS  PubMed  Google Scholar 

  21. Van der Vusse GJ, Roemen TH, Reneman RS (1980) Assessment of fatty acids in dog left ventricular myocardium. Biochim Biophys Acta 617(2):347–349

    PubMed  Google Scholar 

  22. Previati M, Bertolaso L, Tramarin M, Bertagnolo V, Capitani S (1996) Low nanogram range quantitation of diglycerides and ceramide by high-performance liquid chromatography. Anal Biochem 233:108–114

    Article  CAS  PubMed  Google Scholar 

  23. Mahadevappa VG, Holub BJJ (1987) Chromatographic analysis of phosphoinositydes and their breakdown products in activated blood platelets/neutrophils. J Chromatogr Libr 37:225

    CAS  Google Scholar 

  24. Liu B, Hannun YA (2000) Sphingomyelinase assay using radiolabeled substrate. Meth Enzymol 311:164–167

    Article  CAS  PubMed  Google Scholar 

  25. Zabielski P, Baranowski M, Zendzian-Piotrowska M, Błachnio-Zabielska A, Górski J (2008) Bezafibrate decreases growth stimulatory action of the Sphingomyelin signaling pathway in regenerating rat liver. Prostaglandins Other Lipid Mediat 85(1–2):17–25

    Article  CAS  PubMed  Google Scholar 

  26. Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, Smith SR (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54(7):1926–1933

    Article  CAS  PubMed  Google Scholar 

  27. Oakes ND, Kennedy CJ, Jenkins AB, Laybutt DR, Chisholm DJ, Kraegen EW (1994) A new antidiabetic agent, BRL 49653, reduces lipid availability and improves insulin action and glucoregulation in the rat. Diabetes 43(10):1203–1210

    Article  CAS  PubMed  Google Scholar 

  28. Adams LA, Angulo P, Lindor KD (2005) Nonalcoholic fatty liver disease. CMAJ 172:899–905

    PubMed  Google Scholar 

  29. Weiss R (2007) Fat distribution and storage: how much, where, and how? Eur J Endocrinol 157(1):S39–S45

    Article  CAS  PubMed  Google Scholar 

  30. Ichi I, Nakahara K, Kiso K, Kojo S (2007) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Nutrition 23(7–8):570–574

    Article  CAS  PubMed  Google Scholar 

  31. Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011

    Article  CAS  PubMed  Google Scholar 

  32. Gaster M, Rustan AC, Beck-Nielsen H (2005) Differential utilization of saturated palmitate and unsaturated oleate: evidence from cultured myotubes. Diabetes 54:648–656

    Article  CAS  PubMed  Google Scholar 

  33. Leyton J, Drury PJ, Crawford MA (1987) Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br J Nutr 57:383–393

    Article  CAS  PubMed  Google Scholar 

  34. Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 278:10297–10303

    Article  CAS  PubMed  Google Scholar 

  35. Hu W, Bielawski J, Samad F, Merrill AH Jr, Cowart LA (2009) Palmitate increases sphingosine-1-phosphate in C2C12 myotubes via upregulation of sphingosine kinase message and activity. J Lipid Res 50(9):1852–1862

    Article  CAS  PubMed  Google Scholar 

  36. Chavez JA, Holland WL, Bär J, Sandhoff K, Summers SA (2005) Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem 280(20):20148–20153

    Article  CAS  PubMed  Google Scholar 

  37. Shah C, Yang G, Lee I, Bielawski J, Hannun YA, Samad F (2008) Protection from high fat diet-induced increase in ceramide in mice lacking plasminogen activator inhibitor 1. J Biol Chem 283(20):13538–13548

    Article  CAS  PubMed  Google Scholar 

  38. Tettamanti G (2004) Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J 20:301–317

    Article  CAS  PubMed  Google Scholar 

  39. Tafesse FG, Ternes P, Holthuis JC (2006) The multigenic sphingomyelin synthase family. J Biol Chem 281(40):29421–29425

    Article  CAS  PubMed  Google Scholar 

  40. Albi E, Viola-Magni MP (2003) Chromatin-associated sphingomyelin: metabolism in relation to cell function. Cell Biochem Funct 21(3):211–215

    Article  CAS  PubMed  Google Scholar 

  41. Gao J, Zhang RL, Zhou CQ, Ma Y, Zhuang GL (2009) RNA interference targeting of sphingomyelin phosphodiesterase 1 protects human granulosa cells from apoptosis. J Obstet Gynaecol Res 35(3):421–428

    Article  CAS  PubMed  Google Scholar 

  42. Abboushi N, El-Hed A, El-Assaad W, Kozhaya L, El-Sabban ME, Bazarbachi A, Badreddine R, Bielawska A, Usta J, Dbaibo GS (2004) Ceramide inhibits IL-2 production by preventing protein kinase C-dependent NF-kappaB activation: possible role in protein kinase Ctheta regulation. Immunology 173(5):3193–3200

    CAS  Google Scholar 

  43. Ves-Losada A, Maté SM, Brenner RR (2001) Incorporation and distribution of saturated and unsaturated fatty acids into nuclear lipids of hepatic cells. Lipids 36(3):273–282

    Article  CAS  PubMed  Google Scholar 

  44. Schroeder F, Petrescu AD, Huang H, Atshaves BP, McIntosh AL, Martin GG, Hostetler HA, Vespa A, Landrock D, Landrock KK, Payne HR, Kier AB (2008) Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 43(1):1–17

    Article  CAS  PubMed  Google Scholar 

  45. Koval M, Pagano RE (1991) Intracellular transport and metabolism of sphingomyelin. Biochim Biophys Acta 1082(2):113–125

    CAS  PubMed  Google Scholar 

  46. Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, Kolesnick RM (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525–535

    Article  CAS  PubMed  Google Scholar 

  47. Mathias S, Younes A, Kan CC, Orlow I, Joseph C, Kolesnick RN (1993) Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science 259:519–522

    Article  CAS  PubMed  Google Scholar 

  48. Yamaji T, Kumagai K, Tomishige N, Hanada K (2008) Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life 60(8):511–518

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by Medical University of Bialystok (Grant No. 3-18787 and 3-18717).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Chabowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chocian, G., Chabowski, A., Żendzian-Piotrowska, M. et al. High fat diet induces ceramide and sphingomyelin formation in rat’s liver nuclei. Mol Cell Biochem 340, 125–131 (2010). https://doi.org/10.1007/s11010-010-0409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0409-6

Keywords

Navigation