Skip to main content

Advertisement

Log in

Liver fatty acid binding protein gene ablation enhances age-dependent weight gain in male mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although studies performed in vitro and with transfected cells in culture suggest a role for liver fatty acid binding protein (L-FABP) in regulating fatty acid oxidation and fat deposition, the physiological significance of this possibility is not completely clear. To begin to address this question, the effect of L-FABP gene ablation on phenotype of standard rodent chow-fed male mice was examined with increasing age up to 18 months. While young (2–3 months old) L-FABP null mice displayed no visually obvious phenotype, with increasing age >9 months the L-FABP null mice were visibly larger, exhibiting increased body weight due to increased fat and lean tissue mass. Liver lipid concentrations were unaffected by L-FABP gene ablation with the exception of triacylglycerol, which was decreased by 74% in the livers of 3-month-old mice. Likewise, serum lipid levels were not altered in L-FABP null mice with the exception of triacylglycerol, which was increased in the serum of 18-month-old mice. Increased body weight, fat tissue mass, and lean tissue mass in 18-month-old L-FABP null mice were accompanied by increased hepatic levels of low-density lipoprotein (LDL) receptor, peroxisome proliferator-activated receptor (PPAR) α, and PPARα-regulated proteins such as fatty acid transport protein (FATP), fatty acid translocase (FAT/CD36), carnitine palmitoyl transferase I (CPT I), and lipoprotein lipase (LPL). A key enzyme in cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase, was down-regulated in L-FABP null mice. These findings were consistent with a proposed role for L-FABP as an important physiological regulator of PPARα.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schroeder F, Petrescu AD, Huang H, Atshaves BP, McIntosh AL, Martin GG, Hostetler HA, Vespa A, Landrock K, Landrock D, Payne HR, Kier AB (2008) Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 43:1–17. doi:10.1007/s11745-007-3111-z

    Article  PubMed  CAS  Google Scholar 

  2. Desvergne B, Michalik L, Wahli W (2004) Be fit or be sick: peroxisome proliferator-activated receptors are down the road. Mol Endocrinol 18:1321–1332. doi:10.1210/me.2004-0088

    Article  PubMed  CAS  Google Scholar 

  3. Frederiksen KS, Wulf EM, Wassermann K, Sauerberg P, Fleckner J (2003) Identification of hepatic transcriptional changes in insulin-resistant rats treated with peroxisome proliferator activated receptor α agonists. J Mol Endocrinol 30:317–329. doi:10.1677/jme.0.0300317

    Article  PubMed  CAS  Google Scholar 

  4. Francis GA, Fayard E, Picard F, Auwerx J (2003) Nuclear receptors and the control of metabolism. Annu Rev Physiol 65:261–311. doi:10.1146/annurev.physiol.65.092101.142528

    Article  PubMed  CAS  Google Scholar 

  5. Lin Q, Ruuska SE, Shaw NS, Dong D, Noy N (1999) Ligand selectivity of the peroxisome proliferator-activated receptor α. Biochemistry 38:185–190. doi:10.1021/bi9816094

    Article  PubMed  CAS  Google Scholar 

  6. Hostetler HA, Petrescu AD, Kier AB, Schroeder F (2005) Peroxisome proliferator activated receptor α (PPARα) interacts with high affinity and is conformationally responsive to endogenous ligands. J Biol Chem 280:18667–18682. doi:10.1074/jbc.M412062200

    Article  PubMed  CAS  Google Scholar 

  7. Hostetler HA, Kier AB, Schroeder F (2006) Very-long-chain and branched-chain fatty acyl CoAs are high affinity ligands for the peroxisome proliferator-activated receptor α (PPARα). Biochemistry 45:7669–7681. doi:10.1021/bi060198l

    Article  PubMed  CAS  Google Scholar 

  8. Jorgensen C, Krogsdam A-M, Kratchamarova I, Willson TM, Knudsen J, Mandrup S, Kristiansen K (2002) Opposing effects of fatty acids and acyl-CoA esters on conformation and cofactor recruitment of peroxisome proliferator activated receptors. Ann N Y Acad Sci USA 967:431–439

    Article  CAS  Google Scholar 

  9. Elholm M, Dam I, Jorgenesen C, Krogsdam A-M, Holst D, Kratchamarova I, Gottlicher M, Gustafsson JA, Berge RK, Flatmark T, Knudsen J, Mandrup S, Kristiansen K (2001) Acyl CoA esters antagonize the effects of ligands on peroxisome proliferator activated receptor α conformation, DNA binding, and interaction with cofactors. J Biol Chem 276:21410–21416. doi:10.1074/jbc.M101073200

    Article  PubMed  CAS  Google Scholar 

  10. Gottlicher M, Demoz A, Svensson D, Tollet P, Berge RK, Gustafsson JA (1993) Structural and metabolic requirements for activators of the peroxisome proliferator-activated receptor. Biochem Pharmacol 46:2177–2184. doi:10.1016/0006-2952(93)90607-X

    Article  PubMed  CAS  Google Scholar 

  11. Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc Natl Acad Sci USA 94:4312–4317. doi:10.1073/pnas.94.9.4312

    Article  PubMed  CAS  Google Scholar 

  12. Huang H, Starodub O, McIntosh A, Kier AB, Schroeder F (2002) Liver fatty acid binding protein targets fatty acids to the nucleus: real-time confocal and multiphoton fluorescence imaging in living cells. J Biol Chem 277:29139–29151. doi:10.1074/jbc.M202923200

    Article  PubMed  CAS  Google Scholar 

  13. Huang H, Starodub O, McIntosh A, Atshaves BP, Woldegiorgis G, Kier AB, Schroeder F (2004) Liver fatty acid binding protein colocalizes with peroxisome proliferator receptor α and enhances ligand distribution to nuclei of living cells. Biochemistry 43:2484–2500. doi:10.1021/bi0352318

    Article  PubMed  CAS  Google Scholar 

  14. Faergeman NJ, Knudsen J (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323:1–12

    PubMed  CAS  Google Scholar 

  15. Knudsen J, Jensen MV, Hansen JK, Faergeman NJ, Neergard T, Gaigg B (1999) Role of acyl CoA binding protein in acyl CoA transport, metabolism, and cell signaling. Mol Cell Biochem 192:95–103. doi:10.1023/A:1006830606060

    Article  PubMed  CAS  Google Scholar 

  16. Lawrence JW, Kroll DJ, Eacho PI (2000) Ligand dependent interaction of hepatic fatty acid binding protein with the nucleus. J Lipid Res 41:1390–1401

    PubMed  CAS  Google Scholar 

  17. Schroeder F, Atshaves BP, Starodub O, Boedeker AL, Smith R, Roths JB, Foxworth WB, Kier AB (2001) Expression of liver fatty acid binding protein alters growth and differentiation of embryonic stem cells. Mol Cell Biochem 219:127–138. doi:10.1023/A:1010851130136

    Article  PubMed  CAS  Google Scholar 

  18. Escher P, Wahli W (2000) Peroxisome proliferator activated receptors: insights into multiple cellular functions. Mutat Res 448:121–138. doi:10.1016/S0027-5107(99)00231-6

    PubMed  CAS  Google Scholar 

  19. Kersten S (2002) Peroxisome proliferator activated receptors and obesity. Eur J Pharm 440:223–234. doi:10.1016/S0014-2999(02)01431-0

    Article  CAS  Google Scholar 

  20. Kersten S, Seydoux J, Peters JM, Gonzalex FJ, Desvergne B, Wahli W (1999) PPARα mediates the adaptive response to fasting. J Clin Invest 103:1489–1498. doi:10.1172/JCI6223

    Article  PubMed  CAS  Google Scholar 

  21. Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role of for the peroxisome proliferator activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model for fatty acid oxidation disorders. Proc Natl Acad Sci USA 96:7473–7478. doi:10.1073/pnas.96.13.7473

    Article  PubMed  CAS  Google Scholar 

  22. Hashimoto T, Cook WS, Qi C, Yeldandi AV, Reddy JK, Rao MS (2000) Defect in peroxisome proliferator activated receptor α-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 275:28918–28928. doi:10.1074/jbc.M910350199

    Article  PubMed  CAS  Google Scholar 

  23. Costet P, Legendre C, More J, Edgar A, Galtier P, Pineau T (1998) PPARα deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem 273:29577–29585. doi:10.1074/jbc.273.45.29577

    Article  PubMed  CAS  Google Scholar 

  24. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA 90:2160–2164. doi:10.1073/pnas.90.6.2160

    Article  PubMed  CAS  Google Scholar 

  25. Erol E, Kumar LS, Cline GW, Shulman GI, Kelly DP, Binas B (2004) Liver fatty acid-binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARα in fasting mice. FASEB J 18:347–349

    PubMed  CAS  Google Scholar 

  26. Newberry EP, Xie Y, Kennedy S, Buhman KK, Luo J, Gross RW, Davidson NO (2003) Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid binding protein gene. J Biol Chem 278:51664–51672. doi:10.1074/jbc.M309377200

    Article  PubMed  CAS  Google Scholar 

  27. Atshaves BP, McIntosh AL, Lyuksyutova OI, Zipfel WR, Webb WW, Schroeder F (2004) Liver fatty acid binding protein gene ablation inhibits branched-chain fatty acid metabolism in cultured primary hepatocytes. J Biol Chem 279:30954–30965. doi:10.1074/jbc.M313571200

    Article  PubMed  CAS  Google Scholar 

  28. Martin GG, Atshaves BP, McIntosh AL, Mackie JT, Kier AB, Schroeder F (2005) Liver fatty acid binding protein (L-FABP) gene ablation alters liver bile acid metabolism in male mice. Biochem J 391:549–560. doi:10.1042/BJ20050296

    Article  PubMed  CAS  Google Scholar 

  29. Atshaves BP, McIntosh AL, Payne HR, Mackie J, Kier AB, Schroeder F (2005) Effect of branched-chain fatty acid on lipid dynamics in mice lacking liver fatty acid binding protein gene. Am J Physiol 288:C543–C558. doi:10.1152/ajpcell.00359.2004

    Article  CAS  Google Scholar 

  30. Martin GG, Atshaves BP, McIntosh AL, Mackie JT, Kier AB, Schroeder F (2006) Liver fatty acid binding protein (L-FABP) gene ablation potentiates hepatic cholesterol accumulation in cholesterol-fed female mice. Am J Physiol 290:G36–G48

    CAS  Google Scholar 

  31. Atshaves BP, Petrescu A, Starodub O, Roths J, Kier AB, Schroeder F (1999) Expression and intracellular processing of the 58 kDa sterol carrier protein 2/3-oxoacyl-CoA thiolase in transfected mouse L-cell fibroblasts. J Lipid Res 40:610–622

    PubMed  CAS  Google Scholar 

  32. Atshaves BP, Payne HR, McIntosh AL, Tichy SE, Russell D, Kier AB, Schroeder F (2004) Sexually dimorphic metabolism of branched chain lipids in C57BL/6J mice. J Lipid Res 45:812–830. doi:10.1194/jlr.M300408-JLR200

    Article  PubMed  CAS  Google Scholar 

  33. Martin GG, Danneberg H, Kumar LS, Atshaves BP, Erol E, Bader M, Schroeder F, Binas B (2003) Decreased liver fatty acid binding capacity and altered liver lipid distribution in mice lacking the liver fatty acid binding protein (L-FABP) gene. J Biol Chem 278:21429–21438. doi:10.1074/jbc.M300287200

    Article  PubMed  CAS  Google Scholar 

  34. Atshaves BP, McIntosh AL, Landrock D, Payne HR, Mackie J, Maeda N, Ball JM, Schroeder F, Kier AB (2007) Effect of SCP-x gene ablation on branched-chain fatty acid metabolism. Am J Physiol 292:939–951

    Google Scholar 

  35. Banks WA, Clever CMFCL (2000) Partial saturation and regional variation in the blood to brain transport of leptin in normal weight mice. Am J Physiol Endocrinol Metab 278:E1158–E1165

    PubMed  CAS  Google Scholar 

  36. Banks WA, Farrell CL (2003) Impaired transport of leptin across the blood brain barrier in obesity is acquired and reversible. Am J Physiol Endocrinol Metab 285:E10–E15

    PubMed  CAS  Google Scholar 

  37. Gallegos AM, Atshaves BP, Storey SM, Starodub O, Petrescu AD, Huang H, McIntosh A, Martin G, Chao H, Kier AB, Schroeder F (2001) Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Prog Lipid Res 40:498–563. doi:10.1016/S0163-7827(01)00015-7

    Article  PubMed  CAS  Google Scholar 

  38. Yang F, Vought BW, Satterlee JS, Walkder AK, Jim Sun Z-Y, Watts JL, DeBeaumont R, Saito RM, Hyberts SG, Yang S, Macol C, Tjian R, van den Heuvel S, Hart AC, Wagner G, Naar AM (2006) An ARC/Mediator subunit required fro SREBP control of cholesterol and lipid homeostasis. Nature 442:700–704. doi:10.1038/nature04942

    Article  PubMed  CAS  Google Scholar 

  39. Zitzer H, Wente W, Brenner MB, Sewing S, Gromada BJ, Efanov AM (2006) Sterol regulatory element binding protein-1 mediates liver X-receptor β increases in insulin secretion and insulin messenger ribonuclei acid levels. Endocrinology 147:3898–3905. doi:10.1210/en.2005-1483

    Article  PubMed  CAS  Google Scholar 

  40. McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F (1999) Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res 40:1371–1383

    PubMed  CAS  Google Scholar 

  41. Luxon BA, Weisiger RA (1993) Sex differences in intracellular fatty acid transport: role of cytoplasmic binding proteins. Am J Physiol 265:G831–G841

    PubMed  CAS  Google Scholar 

  42. Weisiger RA (2005) Cytosolic fatty acid binding proteins catalyze two distinct steps in intracellular transport of their ligands. Mol Cell Biochem 239:35–42. doi:10.1023/A:1020550405578

    Article  Google Scholar 

  43. Murphy EJ (1998) L-FABP and I-FABP expression increase NBD-stearate uptake and cytoplasmic diffusion in L-cells. Am J Physiol 275:G244–G249

    PubMed  CAS  Google Scholar 

  44. Atshaves BP, Storey S, Huang H, Schroeder F (2004) Liver fatty acid binding protein expression enhances branched-chain fatty acid metabolism. Mol Cell Biochem 259:115–129. doi:10.1023/B:MCBI.0000021357.97765.f2

    Article  PubMed  CAS  Google Scholar 

  45. Jolly CA, Hubbell T, Behnke WD, Schroeder F (1997) Fatty acid binding protein: stimulation of microsomal phosphatidic acid formation. Arch Biochem Biophys 341:112–121. doi:10.1006/abbi.1997.9957

    Article  PubMed  CAS  Google Scholar 

  46. Jolly CA, Murphy EJ, Schroeder F (1998) Differential influence of rat liver fatty acid binding protein isoforms on phospholipid fatty acid composition: phosphatidic acid biosynthesis and phospholipid fatty acid remodeling. Biochim Biophys Acta 1390:258–268

    PubMed  CAS  Google Scholar 

  47. Schroeder F, Jolly CA, Cho TH, Frolov AA (1998) Fatty acid binding protein isoforms: structure and function. Chem Phys Lipids 92:1–25. doi:10.1016/S0009-3084(98)00003-6

    Article  PubMed  CAS  Google Scholar 

  48. Fuchs M, Hafer A, Muench C, Kannenberg F, Teichmann S, Scheibner J, Stange EF, Seedorf U (2001) Disruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism. J Biol Chem 276:48058–48065

    PubMed  CAS  Google Scholar 

  49. Hafer A, Katzberg N, Muench C, Scheibner J, Stange EF, Seedorf U, and Fuchs M (2000) Studies with sterol carrier protein-2 (SCP-2) gene knockout mice identify liver fatty acid binding protein (FABP1) as intracellular cholesterol transporter contributing to biliary cholesterol hypersecretion and gallstone formation. Gastroenterology 118(4, part 1, suppl 2), 135

    Google Scholar 

  50. Desvergne B, Wahli W (1999) Peroxisome proliferator activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688. doi:10.1210/er.20.5.649

    Article  PubMed  CAS  Google Scholar 

  51. Fex M, Lucas S, Winzell MS, Ahren B, Holm C, Mulder H (2006) β-Cell lipases and insulin secretion. Diabetes 55:S24–S31. doi:10.2337/db06-S004

    Article  CAS  Google Scholar 

  52. Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, Gavrilova O, Reitman ML, Deng C-X, Li C, Kimmel AR, Londos C (2001) Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci USA 98:6494–6499. doi:10.1073/pnas.101042998

    Article  PubMed  CAS  Google Scholar 

  53. Martinez-Botas J, Anderson JB, Tessier D, Lapillonne A, Chang BHJ, Quast MJ, Gorenstein D, Chen K-H, Chan L (2000) Absence of perilipin results in leanness and reverses obesity in Leprdb/db mice. Nat Genet 26:474–479. doi:10.1038/82630

    Article  PubMed  CAS  Google Scholar 

  54. Lubbers ME, van den Bos R, Spruijt BM (2007) Mu opioid receptor knockout mice in the Morris Water Maze: a learning or motivation deficit? Behav Brain Res 180:107–111. doi:10.1016/j.bbr.2007.02.021

    Article  PubMed  CAS  Google Scholar 

  55. Martin GG, Huang H, Atshaves BP, Binas B, Schroeder F (2003) Ablation of the liver fatty acid binding protein gene decreases fatty acyl CoA binding capacity and alters fatty acyl CoA pool distribution in mouse liver. Biochemistry 42:11520–11532. doi:10.1021/bi0346749

    Article  PubMed  CAS  Google Scholar 

  56. Murphy EJ, Barcelo-Coblijn G, Binas B, Glatz JFC (2004) Heart fatty acid uptake is decreased in heart fatty acid binding protein gene-ablated mice. J Biol Chem 279:34481–34488. doi:10.1074/jbc.M314263200

    Article  PubMed  CAS  Google Scholar 

  57. Binas B, Danneberg H, McWhir J, Mullins L, Clark AJ (1999) Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J 13:805–812

    PubMed  CAS  Google Scholar 

  58. Vassileva G, Huwyler L, Poirer K, Agellon LB, Toth MJ (2000) The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J 14:2040–2046. doi:10.1096/fj.99-0959com

    Article  PubMed  CAS  Google Scholar 

  59. Hotamisligl GS, Johnson RS, Distel RJ, Ellis RF, Papaioannou VE, Spiegelman BM (1996) Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274:1377–1379. doi:10.1126/science.274.5291.1377

    Article  Google Scholar 

  60. Schaap FG, Binas B, Danneberg H, Van der Vusse GJ, Glatz JF (1999) Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart type fatty acid binding protein gene. Circ Res 85:329–337

    PubMed  CAS  Google Scholar 

  61. Owada Y, Suzuki I, Noda T, Kondo H (2002) Analysis on the phenotype of E-FABP gene knockout mice. Mol Cell Biochem 239:83–86. doi:10.1023/A:1020524621933

    Article  PubMed  CAS  Google Scholar 

  62. Atshaves BP, Foxworth WB, Frolov AA, Roths JB, Kier AB, Oetama BK, Piedrahita JA, Schroeder F (1998) Cellular differentiation and I-FABP protein expression modulate fatty acid uptake and diffusion. Am J Physiol 274:C633–C644

    PubMed  CAS  Google Scholar 

  63. Walkey CJ, Spiegelman BM (2008) A functional peroxisome proliferator-activated receptor γ ligand binding domina is not required for adipogenesis. J Biol Chem 283:24290–24294. doi:10.1074/jbc.C800139200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the United States Public Health Service National Institutes of Health grants DK41402 (FS and ABK), GM31651 (FS and ABK), and DK70965 (BPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Schroeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, G.G., Atshaves, B.P., McIntosh, A.L. et al. Liver fatty acid binding protein gene ablation enhances age-dependent weight gain in male mice. Mol Cell Biochem 324, 101–115 (2009). https://doi.org/10.1007/s11010-008-9989-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9989-9

Keywords

Navigation