Skip to main content

Advertisement

Log in

Evaluation of oxidant and antioxidant status in term neonates: a plausible protective role of bilirubin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In vitro studies have shown unequivocally that bilirubin is an antioxidant. We hypothesized that bilirubin serves a physiological role of an antioxidant in vivo. To investigate the probable protective role of bilirubin in vivo, term babies with clinical jaundice were grouped into four categories—serum total bilirubin (STB) <160 mg/l, 160–200 mg/l, >200 mg/l, and kernicterus. Serum bilirubin, serum albumin, plasma glucose-6-phosphate dehydrogenase (G6PD), lipid peroxidation in blood cells, and reduced glutathione (GSH) content in whole blood were investigated. We also measured superoxide dismutase (SOD) and catalase in hemolysate and total plasma antioxidant capacity (TAC). Lipid peroxidation and antioxidant enzymes were significantly lower in babies with STB <200 mg/l compared to controls. TAC had a positive and MDA had a negative correlation with STB till 200 mg/l. However, TAC had a negative and MDA had a positive correlation with bilirubin >200 mg/l and in babies with bilirubin encephalopathy. Elevated levels of MDA, SOD, and catalase and significantly decreased levels of reduced glutathione and total antioxidant capacity were observed in STB >200 mg/l group. Antioxidant enzymes were also significantly inhibited in bilirubin encephalopathy babies. Post phototherapy, MDA production and antioxidant levels were significantly increased whilst total antioxidant capacity and reduced glutathione were significantly decreased compared to pre-phototherapy values. Exchange transfusion resulted in reduced oxidative stress in subjects with encephalopathy, whereas no significant difference was observed in other babies with STB >200 mg/l. Taken together, the present study propounds that bilirubin acts as a physiological antioxidant till 200 mg/l concentration in full-term normal neonates. It is conjectured that beyond 200 mg/l, it can no longer be considered physiologic. However, the cause of pathological jaundice needs to be identified and treated. The present data documents that phototherapy also induces oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maisels MJ (1988) Neonatal jaundice. Semin Liver Dis 8:148–162

    Article  PubMed  CAS  Google Scholar 

  2. Abraham NG, Lin JHC, Schwartzman ML, Levere RD, Shibahara S (1988) The physiological significance of heme oxygenase. Int J Biochem 20:543–558. doi:10.1016/0020-711X(88)90093-6

    Article  PubMed  CAS  Google Scholar 

  3. Mc Donagh AF (1990) Is bilirubin good for you? Clin Perinatol 17:359–369

    CAS  Google Scholar 

  4. Stocker R (1990) Induction of heme oxygenase as a defense against oxidative stress. Free Radic Res Commun 9:101–112. doi:10.3109/10715769009148577

    Article  PubMed  CAS  Google Scholar 

  5. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046. doi:10.1126/science.3029864

    Article  PubMed  CAS  Google Scholar 

  6. Frank L, Sosenko IR (1987) Prenatal development of lung antioxidant enzymes in four species. J Pediatr 110:106–110. doi:10.1016/S0022-3476(87)80300-1

    Article  PubMed  CAS  Google Scholar 

  7. Stocker R, Glazer AN, Ames BN (1987) Antioxidant activity of albumin bound bilirubin. Proc Natl Acad Sci USA 84:5918–5992. doi:10.1073/pnas.84.16.5918

    Article  PubMed  CAS  Google Scholar 

  8. Kanofsky JR (1990) Quenching of singlet oxygen by human plasma. Photochem Photobiol 51:299–303. doi:10.1111/j.1751-1097.1990.tb01714.x

    Article  PubMed  CAS  Google Scholar 

  9. Dimascio P, Devasagyam TP, Kaiser S, Sies H (1990) Carotenoids, tocopherols and thiols as biological singlet molecular oxygen quenchers. Biochem Soc Trans 18:1054–1056

    CAS  Google Scholar 

  10. Dennery PA, McDonagh AF, Spitz DR, Rodgers PA, Stevenson DK (1995) Hyperbilirubinemia results in reduced oxidative injury in neonatal gunn rats exposed to hyperoxia. Free Radic Biol Med 4:395–404. doi:10.1016/0891-5849(95)00032-S

    Article  Google Scholar 

  11. Benaron DA, Bowen FW (1991) Variation of initial bilirubin rise in newborn infants with type of illness. Lancet 338:78–81. doi:10.1016/0140-6736(91)90074-Y

    Article  PubMed  CAS  Google Scholar 

  12. Heyman E, Ohlsson A, Girschek P (1989) Retinopathy of prematurity and bilirubin. N Engl J Med 320:256

    PubMed  CAS  Google Scholar 

  13. Halamek LP, Stevenson DK (1997) Neonatal jaundice and liver disease. In: Fanaroff AA, Martin RJ (eds) Neonatal-perinatal medicine: diseases of the fetus and infant, vol 2, 6th edn. Mosby–Year Book, St. Louis, pp 1345–1389

    Google Scholar 

  14. Kornberg A, Horecker BL (1955) Glucose-6-phosphate dehydrogenase. In: Colowick SP, Kaplan NO (eds) Methods enzymol. Academic Press, New York, pp 323–327

    Chapter  Google Scholar 

  15. Okhawa K, Ohishi N, Yagy K (1979) Assay for lipid peroxide in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–359. doi:10.1016/0003-2697(79)90738-3

    Article  Google Scholar 

  16. Bradford NA (1976) A rapid and sensitive method for the quantitation microgram quantities of a protein isolated from red cell membranes. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  17. Beutler E, Duron O, Kelly BM (1961) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    Google Scholar 

  18. Kono Y (1978) Generation of superoxide radical during autooxidation of hydroxylamine and as assay for superoxide dismutase. Arch Biochem Biophys 186:189–195. doi:10.1016/0003-9861(78)90479-4

    Article  PubMed  CAS  Google Scholar 

  19. Luck H (1963) Catalase. In: Bergmeyer HU (ed) Verlag chemic. Academic Press, Weinheim, New York, pp 885–888

    Google Scholar 

  20. Hoffmann ME, Mello-Filho AC, Meneghini R (1984) Correlation between cytotoxic effect of hydrogen peroxide and the yield of DNA strand breaks in cells of different species. Biochim Biophys Acta 781(3):234–238

    PubMed  CAS  Google Scholar 

  21. Sunderman FW (1986) Metals and lipid peroxidation. Acta Pharmacol Toxicol (Copenh) 59(Suppl 7):248–255

    CAS  Google Scholar 

  22. Bernhard K, Ritzel G, Steiner KU (1954) On a biological significance of bile pigments: bilirubin and biliverdin as antioxidants for vitamin A and essential fatty acids. Clin Chim Acta 37:306–313

    CAS  Google Scholar 

  23. Dahiya K, Tiwari AD, Shankar V, Kharb S, Dhankhar R (2006) Antioxidant status in neonatal jaundice before and after phototherapy. Indian J Biochem 21:157–160

    Article  CAS  Google Scholar 

  24. Charles E, Ahlfors CE, Herbsman O (2003) Unbound bilirubin in a term newborn with kernicterus. Pediatrics 111(5):1110–1112. doi:10.1542/peds.111.5.1110

    Article  Google Scholar 

  25. Ahlfors CE, Wennberg RP (2004) Bilirubin-albumin binding and neonatal jaundice. Semin Perinatol 28:334–339. doi:10.1053/j.semperi.2004.09.002

    Article  PubMed  Google Scholar 

  26. Ahlfors CE (2001) Bilirubin-albumin binding and free bilirubin. J Perinatol 21:S40–S42. doi:10.1038/sj.jp. 7210631

    Article  PubMed  Google Scholar 

  27. Metinko AP (1998) Neonatal pulmonary host defense mechanisms. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology, 2nd edn. Saunders, Philadelphia, pp 2065–2069

    Google Scholar 

  28. Blum J, Fridovich I (1985) Inactivation of glutathione peroxidase by superoxide radical. Arch Biochem Biophys 240:500–508. doi:10.1016/0003-9861(85)90056-6

    Article  PubMed  CAS  Google Scholar 

  29. Attri S, Sharma N, Jahagirdar S, Thapa BR, Prasad R (2006) Erythrocyte metabolism and antioxidant status of patients with Wilson disease with hemolytic anemia. Pediatr Res 59:593–597. doi:10.1203/01.pdr.0000203098.77573.39

    Article  PubMed  CAS  Google Scholar 

  30. Blech DM, Borders CL Jr (1983) Hydroperoxide anion, HO 2 , is an affinity reagent for the inactivation of yeast Cu, Zn, superoxide dismutase: modification of one histidine per subunit. Arch Biochem Biophys 224:579–586. doi:10.1016/0003-9861(83)90245-X

    Article  PubMed  CAS  Google Scholar 

  31. Christensen T, Kinn G, Amundsen I (1994) Cells, bilirubin and light: formation of bilirubin photoproducts and cellular damage at defined wavelengths. Acta Paediatr 83:7–12. doi:10.1111/j.1651-2227.1994.tb12943.x

    Article  PubMed  CAS  Google Scholar 

  32. Ostrea EM, Cepeda EE, Fleury CA, Balun JE (1985) Red cell membrane lipid peroxidation and hemolysis secondary to phototherapy. Acta Paediatr Scand 74:378–381. doi:10.1111/j.1651-2227.1985.tb10987.x

    Article  PubMed  CAS  Google Scholar 

  33. Karthikeyan G, Narang A, Majumdar S, Shivani K (1977) Photooxidant injury to glucose-6-phosphate dehydrogenase-deficient erythrocytes with bilirubin as the sensitizer-an in vitro study. Acta Paediatr 86:321–322. doi:10.1111/j.1651-2227.1997.tb08899.x

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support by the Indian Council of Medical Research, New Delhi, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shekeeb Shahab, M., Kumar, P., Sharma, N. et al. Evaluation of oxidant and antioxidant status in term neonates: a plausible protective role of bilirubin. Mol Cell Biochem 317, 51–59 (2008). https://doi.org/10.1007/s11010-008-9807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9807-4

Keywords

Navigation