Skip to main content
Log in

Proapoptotic activity of cytochrome c in living cells: effect of K72 substitutions and species differences

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cytochrome c is one of the key proteins involved in the programmed cell death, and lysine 72 is known to be required for its apoptogenic activity. We have engineered a number of horse and murine cytochrome c single-point mutants with various substitutions at position 72 and compared quantitatively their proapoptotic activity in living cells. Apoptosis was activated by transferring exogenous cytochrome c into the cytoplasm of cells via a nontraumatic electroporation procedure. All mutant proteins studied exhibited significantly reduced proapoptotic activities in comparison with those for the wild type cytochromes. Relative activity of the horse (h(K72X)) and murine (m(K72W)) mutant proteins diminished in the order: h(K72R) > h(K72G) > h(K72A) > h(K72E) > h(K72L) ≫ h(K72W) > m(K72W). As estimated, the horse and murine K72W mutants were at least 200- and 500-fold less active than corresponding wild type proteins. Thus, the K72W-substituted cytochrome c can serve as an adequate candidate for knock-in studies of cytochrome c-mediated apoptosis. The proapoptotic activity of wild-type cytochrome c from different species in murine monocytic WEHI-3 cells reduced in the order: murine cytochrome c > human cytochrome c ≈ horse cytochrome c, thus indicating that apoptotic effect of cytochrome c depends on the species compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Apaf-1:

Apoptotic protease-activating factor

AnV:

Recombinant human annexin V conjugated with R-phycoerythrin

CSI:

Confocal spectral imaging

FCS:

Fetal calf serum

h(K72A), h(K72E), h(K72L), and h(К72W):

Horse heart cytochrome c mutants K72A, K72E, K72L, and К72W, respectively

m(K72W):

Murine cytochrome c mutant К72W

PI:

Propidium iodide

Rh:

Rhodamine 123

TR:

Tetramethylrhodamine

References

  1. Skulachev VP (1998) Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423:275–280

    Article  PubMed  CAS  Google Scholar 

  2. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  3. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  4. Rodrigues J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13:3179–3184

    Article  Google Scholar 

  5. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556

    Article  PubMed  CAS  Google Scholar 

  6. Yu T, Wang X, Purring-Koch C, Wei Y, McLendon GL (2001) A mutational epitope for cytochrome C binding to the apoptosis protease activation factor-1. J Biol Chem 276:13034–13038

    Article  PubMed  CAS  Google Scholar 

  7. Kluck RM, Ellerby LM, Ellerby HM, Naiem S, Yaffe MP, Margoliash E, Bredesen D, Mauk AG, Sherman F, Newmeyer DD (2000) Determinants of cytochrome c pro-apoptotic activity. The role of lysine 72 trimethylation. J Biol Chem 275:16127–16133

    Article  PubMed  CAS  Google Scholar 

  8. Abdullaev ZKh, Bodrova ME, Chernyak BV, Dolgikh DA, Kluck RM, Pereverzev MO, Arseniev AS, Efremov RG, Kirpichnikov MP, Mokhova EN, Newmeyer DD, Roder H, Skulachev VP (2002) A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect. Biochem J 362:749–754

    Article  PubMed  CAS  Google Scholar 

  9. Sharonov GV, Feofanov AV, Bocharova OV, Astapova MV, Dedukhova VI, Chernyak BV, Dolgikh DA, Arseniev AS, Skulachev VP, Kirpichnikov MP (2005) Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells. Apoptosis 10:797–808

    Article  PubMed  CAS  Google Scholar 

  10. Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A, Okada H, Calzascia T, Jang Y, You-Ten A, Yeh WC, Ohashi P, Wang X, Mak TW (2005) Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell 121:579–591

    Article  PubMed  CAS  Google Scholar 

  11. Dolgikh DA, Latypov RF, Abdullaev ZK, Kolon V, Roder H, Kirpichnikov MP (1998) Expression of mutant horse cytochrome c genes in Escherichia coli. Russ J Bioorg Chem 24:672–675

    Google Scholar 

  12. Latypov RF, Cheng H, Roder NA, Zhang J, Roder HJ (2006) Structural characterization of an equilibrium unfolding intermediate in cytochrome c. J Mol Biol 31 357(3):1009–1025

    Google Scholar 

  13. Hagen SJ, Latypov RF, Dolgikh DA, Roder H (2002) Rapid intrachain binding of histidine-26 and histidine-33 to heme in unfolded ferrocytochrome C. Biochemistry 29 41(4):1372–1380

    Google Scholar 

  14. Feofanov A, Sharonov S, Kudelina I, Fleury F, Nabiev I (1997) Localization and molecular interactions of mitoxantrone within living K562 cells as probed by confocal spectral imaging analysis. Biophys J 73:3317–3327

    Article  PubMed  CAS  Google Scholar 

  15. Feofanov A, Sharonov S, Fleury F, Kudelina I, Nabiev I (1997) Quantitative confocal spectral imaging analysis of mitoxantrone within living K562 cells: intracellular accumulation and distribution of monomers, aggregates, naphtoquinoxaline metabolite, and drug-target complexes. Biophys J 73:3328–3336

    PubMed  CAS  Google Scholar 

  16. Feofanov AV, Grichine AI, Kudelina IA, Shitova L, Karmakova T, Yakubovskaya R, Egret-Charlier M, Vigny P (1999) Study of localization and molecular interactions of biologically active compounds in living cells and tissue slices based on confocal microspectroscopy and reconstruction of the spectral images. Russ J Bioorg Chem 25:892–902

    CAS  Google Scholar 

  17. Gabriel B, Sureau F, Casselyn M, Teissie J, Petit PX (2003) Retroactive pathway involving mitochondria in electroloaded cytochrome c-induced apoptosis. Protective properties of Bcl-2 and Bcl-XL Exp. Cell Res 289:195–210

    Article  CAS  Google Scholar 

  18. Mesner PW Jr, Bible KC, Martins LM, Kottke TJ, Srinivasula SM, Svingen PA, Chilcote TJ, Basi GS, Tung JS, Krajewski S, Reed JC, Alnemri ES, Earnshaw WC, Kaufmann SH (1999) Characterization of caspase processing and activation in HL-60 cell cytosol under cell-free conditions. Nucleotide requirement and inhibitor profile. J Biol Chem 274:22635–22645

    Article  PubMed  CAS  Google Scholar 

  19. Li F, Srinivasan A, Wang Y, Armstrong RC, Tomaselli KJ, Fritz LC (1997) Cell-specific induction of apoptosis by microinjection of cytochrome c. Bcl-xL has activity independent of cytochrome c release. J Biol Chem 272:30299–30305

    Article  PubMed  CAS  Google Scholar 

  20. Brustugun OT, Fladmark KE, Doskeland SO, Orrenius S, Zhivotovsky B (1998) Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2. Cell Death Differ 5:660–668

    Article  PubMed  CAS  Google Scholar 

  21. Garland JM, Rudin C (1998) Cytochrome c induces caspase-dependent apoptosis in intact hematopoietic cells and overrides apoptosis suppression mediated by bcl-2, growth factor signaling, MAP-kinase-kinase, and malignant change. Blood 92:1235–1246

    PubMed  CAS  Google Scholar 

  22. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–737

    Article  PubMed  CAS  Google Scholar 

  23. Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94:339–352

    Article  PubMed  CAS  Google Scholar 

  24. Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kagi D, Hakem A, McCurrach M, Khoo W, Kaufman SA, Senaldi G, Howard T, Lowe SW, Mak TW (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12:806–819

    Article  PubMed  CAS  Google Scholar 

  25. Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739–750

    Article  PubMed  CAS  Google Scholar 

  26. Acehan D, Jiang H, Morgan DG, Heuser JE, Wang X, Ahey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423–432

    Article  PubMed  CAS  Google Scholar 

  27. Kim H-E, Du F, Fang M, Wang X (2005) Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci 102:17545–17550

    Article  PubMed  CAS  Google Scholar 

  28. Margoliash E, Lustgarten J (1962) Interconversion of horse heart cytochrome C monomer and polymers. J Biol Chem 237:3397–3405

    PubMed  CAS  Google Scholar 

  29. Chandra D, Bratton SB, Person MD, Tian Y, Martin AG, Ayres M, Fearnhead HO, Gandhi V, Tang DG (2006) Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell 125:1333–1346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Professor V. P. Skulachev for his encouragement and fruitful discussions. Thе research was supported by the RAS MCB Programme and by the grant SS-1061.2008.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Dolgikh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chertkova, R.V., Sharonov, G.V., Feofanov, A.V. et al. Proapoptotic activity of cytochrome c in living cells: effect of K72 substitutions and species differences. Mol Cell Biochem 314, 85–93 (2008). https://doi.org/10.1007/s11010-008-9768-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9768-7

Keywords

Navigation